-
Notifications
You must be signed in to change notification settings - Fork 12
/
Stackdensity.C
370 lines (306 loc) · 13.7 KB
/
Stackdensity.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/*
Developed by Sandeep Sharma and Garnet K.-L. Chan, 2012
Copyright (c) 2012, Garnet K.-L. Chan
This program is integrated in Molpro with the permission of
Sandeep Sharma and Garnet K.-L. Chan
*/
#include "Stackspinblock.h"
#include "Stackdensity.h"
#include "Stackwavefunction.h"
#include "operatorloops.h"
#include "operatorfunctions.h"
#ifdef _OPENMP
#include <omp.h>
#endif
#include "stackguess_wavefunction.h"
#include "distribute.h"
#include <boost/format.hpp>
#include "pario.h"
namespace SpinAdapted{
using namespace operatorfunctions;
void StackDensityMatrix::makedensitymatrix(std::vector<StackWavefunction>& wave_solutions, StackSpinBlock &big,
const std::vector<double> &wave_weights, const double noise, const double additional_noise, bool warmup)
{
//the density Matrix should already be allocated
for(int i=0;i<wave_weights.size()&& mpigetrank() == 0;++i) {
makedensitymatrix(wave_solutions[i], big, wave_weights[i]);
}
#ifndef SERIAL
boost::mpi::communicator world;
//broadcast the data
MPI_Bcast(this->get_data(), this->memoryUsed(), MPI_DOUBLE, 0, Calc);
#endif
if(noise > NUMERICAL_ZERO) {
/* check normalisation */
double norm = 0.0;
for(int lQ=0;lQ<nrows();++lQ)
if(allowed(lQ,lQ))
for(int i=0;i<(*this)(lQ,lQ).Nrows();++i)
norm += (*this)(lQ,lQ)(i+1,i+1);
p2out << "\t\t\t norm before modification " << norm << endl;
int nroots = wave_solutions.size();
#ifndef SERIAL
boost::mpi::communicator world;
boost::mpi::broadcast(calc, nroots, 0);
#endif
{
double* backupData, *noiseMatrix;
long requiredData;
//make a backup of the actual density Matrix, only on the main root node
if (mpigetrank() == 0) {
requiredData = getRequiredMemory(*big.get_leftBlock(), get_deltaQuantum());
backupData = Stackmem[omprank].allocate(requiredData);
noiseMatrix = Stackmem[omprank].allocate(requiredData);
memset(noiseMatrix, 0, requiredData * sizeof(double));
DCOPY(requiredData, this->get_data(), 1, &backupData[0], 1);
}
mcheck("just before noise");
StackWavefunction *wptr = &wave_solutions[0];
for (int i=0; i<nroots; i++) {
this->Clear();
if (mpigetrank() == 0)
wptr = &wave_solutions[i];
#ifndef SERIAL
MPI_Bcast(wptr->get_data(), wptr->memoryUsed(), MPI_DOUBLE, 0, Calc);
#endif
this->add_onedot_noise(*wptr, big, (1.0*noise)/nroots);
//add the noise from this wavefunction back to the noiseMatrix on the 0th proc
if (mpigetrank() == 0)
DAXPY(requiredData, 1.0, this->get_data(), 1, noiseMatrix, 1);
}
mcheck("just after noise");
//copy back the noiseMatrix to "this", and deallocate the noiseMatrix
if (mpigetrank() == 0) {
DCOPY(requiredData, noiseMatrix, 1, this->get_data(), 1);
Stackmem[omprank].deallocate(noiseMatrix, requiredData);
}
if (mpigetrank() == 0) {
norm = 0.0;
for(int lQ=0;lQ<nrows();++lQ)
if(this->allowed(lQ,lQ))
for(int i=0;i<(*this)(lQ,lQ).Nrows();++i)
norm += (*this)(lQ,lQ)(i+1,i+1);
//add the noise density matrix to the current matrix
if (fabs(norm) > 1.0e-8)
DAXPY(requiredData, noise/norm, this->get_data(), 1, &backupData[0], 1);
//copy it back to this
DCOPY(requiredData, &backupData[0], 1, this->get_data(), 1);
p2out << "\t\t\t norm after modification " << trace(*this) << endl;
}
if (mpigetrank() == 0)
Stackmem[omprank].deallocate(backupData, requiredData);
}
}
}
void StackDensityMatrix::makedensitymatrix(StackWavefunction& wave_solution, StackSpinBlock &big,
const double &wave_weight)
{
MultiplyWithOwnTranspose (wave_solution, *this, wave_weight);
}
void StackDensityMatrix::add_twodot_noise(const StackSpinBlock &big, const double noise)
{
pout << "Twodot noise is not supported with StackDensityMatrix";
exit(0);
}
StackDensityMatrix& StackDensityMatrix::operator+=(const StackDensityMatrix& other)
{
DAXPY(totalMemory, 1.0, (const_cast<StackDensityMatrix&>(other)).get_data(), 1, get_data(), 1);
return *this;
}
class onedot_noise_f
{
private:
const StackWavefunction& wavefunction;
StackDensityMatrix*& dm;
const StackSpinBlock& big;
const double scale;
bool distributed;
bool synced;
public:
onedot_noise_f(StackDensityMatrix*& dm_, const StackWavefunction& wavefunction_, const StackSpinBlock& big_, const double scale_)
: distributed(false), synced(true), wavefunction(wavefunction_), dm(dm_), big(big_), scale(scale_) { }
void operator()(const boost::shared_ptr<StackSparseMatrix> op) const {
vector<SpinQuantum> wQ = wavefunction.get_deltaQuantum();
vector<SpinQuantum> oQ = op->get_deltaQuantum();
vector<IrrepSpace> vec = wQ[0].get_symm() + oQ[0].get_symm();
vector<SpinSpace> spinvec = wQ[0].get_s()+oQ[0].get_s();
if (dmrginp.hamiltonian() == BCS) {
for (int n = 0; n <= dmrginp.effective_molecule_quantum().get_n(); ++n) {
bool valid_cre = false, valid_des = false;
for (int k = 0; k < wQ.size(); ++k) {
for (int l = 0; l < oQ.size(); ++l) {
if (wQ[k].get_n() + oQ[l].get_n() == n) valid_cre = true;
if (!big.get_leftBlock()->has(DES) && wQ[k].get_n() - oQ[l].get_n() == n) valid_des = true;
}
}
if (!valid_cre && !valid_des) continue;
if (!op->memoryUsed()) {
op->allocate(big.get_leftBlock()->get_braStateInfo(), big.get_leftBlock()->get_ketStateInfo());
op->build(*big.get_leftBlock());
}
for (int j = 0; j < vec.size(); ++j) {
for (int i = 0; i < spinvec.size(); ++i) {
if (valid_cre) {
SpinQuantum q = SpinQuantum(n, spinvec[i], vec[j]);
StackWavefunction opxwave;
opxwave.initialise(std::vector<SpinQuantum>(1,q), *big.get_braStateInfo().leftStateInfo, *big.get_ketStateInfo().rightStateInfo, wavefunction.get_onedot());
opxwave.set_onedot(wavefunction.get_onedot());
opxwave.Clear();
TensorMultiply(big.get_leftBlock(), *op, &big, const_cast<StackWavefunction&> (wavefunction), opxwave, dmrginp.molecule_quantum(), 1.0);
double norm = DotProduct(opxwave, opxwave);
if (abs(norm) > NUMERICAL_ZERO) {
Scale(1./sqrt(norm), opxwave);
MultiplyWithOwnTranspose (opxwave, dm[omprank], scale);
}
opxwave.deallocate();
}
if (valid_des) {
SpinQuantum q = SpinQuantum(n, spinvec[i], vec[j]);
StackWavefunction opxwave2;
opxwave2.initialise(std::vector<SpinQuantum>(1,q), *big.get_braStateInfo().leftStateInfo, *big.get_ketStateInfo().rightStateInfo, wavefunction.get_onedot());
opxwave2.set_onedot(wavefunction.get_onedot());
opxwave2.Clear();
TensorMultiply(big.get_leftBlock(), Transpose(*op), &big, const_cast<StackWavefunction&> (wavefunction), opxwave2, dmrginp.molecule_quantum(), 1.0);
double norm = DotProduct(opxwave2, opxwave2);
if (abs(norm) >NUMERICAL_ZERO) {
Scale(1./sqrt(norm), opxwave2);
MultiplyWithOwnTranspose (opxwave2, dm[omprank], scale);
//MultiplyProduct(opxwave2, Transpose(opxwave2), dm[0], scale);
}
opxwave2.deallocate();
}
}
}
}
op->deallocate();
} else {
for (int k=0; k<wQ.size(); ++k)
for (int l=0; l<oQ.size(); ++l)
for (int j=0; j<vec.size(); j++)
for (int i=0; i<spinvec.size(); i++) {
SpinQuantum q = SpinQuantum(wQ[k].get_n()+oQ[l].get_n(), spinvec[i], vec[j]);
op->allocate(big.get_leftBlock()->get_braStateInfo(), big.get_leftBlock()->get_ketStateInfo());
op->build(*big.get_leftBlock());
StackWavefunction opxwave;
opxwave.initialise(std::vector<SpinQuantum>(1,q), *big.get_braStateInfo().leftStateInfo, *big.get_ketStateInfo().rightStateInfo, wavefunction.get_onedot());
opxwave.set_onedot(wavefunction.get_onedot());
opxwave.Clear();
TensorMultiply(big.get_leftBlock(), *op, &big, const_cast<StackWavefunction&> (wavefunction), opxwave, dmrginp.molecule_quantum(), 1.0);
double norm = DotProduct(opxwave, opxwave);
if (abs(norm) > NUMERICAL_ZERO) {
Scale(1./sqrt(norm), opxwave);
MultiplyWithOwnTranspose (opxwave, dm[omprank], scale);
//MultiplyProduct(opxwave, Transpose(opxwave), dm[0], scale);
}
opxwave.deallocate();
//this block has explicit transpose operators, so dont do this step
if (!big.get_leftBlock()->has(DES)) {
q = SpinQuantum(wQ[k].get_n()-oQ[l].get_n(), spinvec[i], vec[j]);
StackWavefunction opxwave2; //= Wavefunction(q, &big, wavefunction.get_onedot());
opxwave2.initialise(std::vector<SpinQuantum>(1,q), *big.get_braStateInfo().leftStateInfo, *big.get_ketStateInfo().rightStateInfo, wavefunction.get_onedot());
opxwave2.set_onedot(wavefunction.get_onedot());
opxwave2.Clear();
TensorMultiply(big.get_leftBlock(), Transpose(*op), &big, const_cast<StackWavefunction&> (wavefunction), opxwave2, dmrginp.molecule_quantum(), 1.0);
double norm = DotProduct(opxwave2, opxwave2);
if (abs(norm) >NUMERICAL_ZERO) {
Scale(1./sqrt(norm), opxwave2);
MultiplyWithOwnTranspose (opxwave2, dm[omprank], scale);
//MultiplyProduct(opxwave2, Transpose(opxwave2), dm[0], scale);
}
opxwave2.deallocate();
}
op->deallocate();
}
}
}
};
// accumulates into dm
void StackDensityMatrix::add_onedot_noise(StackWavefunction& wave_solution, StackSpinBlock& big, bool act2siteops)
{
StackSpinBlock* leftBlock = big.get_leftBlock();
//p1out << "\t\t\t Modifying density matrix " << endl;
StackDensityMatrix* dm;
initiateMultiThread(this, dm, numthrds);
onedot_noise_f onedot_noise(dm, wave_solution, big, 1.);
std::vector<boost::shared_ptr<StackSparseMatrix> > allops;
if (leftBlock->has(CRE)) {
for (int i=0; i<leftBlock->get_op_array(CRE).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(CRE).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(CRE).get_local_element(i)[j]);
}
}
if (leftBlock->has(DES)) {
for (int i=0; i<leftBlock->get_op_array(DES).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(DES).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(DES).get_local_element(i)[j]);
}
}
//use overlap only when bra and ket are different i.e. when the block has des operator
if (leftBlock->has(DES)&&leftBlock->has(OVERLAP) && mpigetrank() == 0) {
for (int i=0; i<leftBlock->get_op_array(OVERLAP).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(OVERLAP).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(OVERLAP).get_local_element(i)[j]);
}
}
if (dmrginp.hamiltonian() != HUBBARD) {
if (leftBlock->has(CRE_CRE)) {
for (int i=0; i<leftBlock->get_op_array(CRE_CRE).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(CRE_CRE).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(CRE_CRE).get_local_element(i)[j]);
}
if (leftBlock->has(CRE_DES)) {
for (int i=0; i<leftBlock->get_op_array(CRE_DES).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(CRE_DES).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(CRE_DES).get_local_element(i)[j]);
}
}
}
else if (leftBlock->has(DES_DESCOMP)) {
for (int i=0; i<leftBlock->get_op_array(DES_DESCOMP).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(DES_DESCOMP).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(DES_DESCOMP).get_local_element(i)[j]);
}
if (leftBlock->has(CRE_DESCOMP)) {
for (int i=0; i<leftBlock->get_op_array(CRE_DESCOMP).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(CRE_DESCOMP).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(CRE_DESCOMP).get_local_element(i)[j]);
}
}
}
if (leftBlock->has(DES_DES)) {
for (int i=0; i<leftBlock->get_op_array(DES_DES).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(DES_DES).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(DES_DES).get_local_element(i)[j]);
}
if (leftBlock->has(DES_CRE)) {
for (int i=0; i<leftBlock->get_op_array(DES_CRE).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(DES_CRE).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(DES_CRE).get_local_element(i)[j]);
}
}
}
else if (leftBlock->has(CRE_CRECOMP)) {
for (int i=0; i<leftBlock->get_op_array(CRE_CRECOMP).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(CRE_CRECOMP).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(CRE_CRECOMP).get_local_element(i)[j]);
}
if (leftBlock->has(DES_CRECOMP)) {
for (int i=0; i<leftBlock->get_op_array(DES_CRECOMP).get_size(); i++)
for (int j=0; j<leftBlock->get_op_array(DES_CRECOMP).get_local_element(i).size(); j++) {
allops.push_back(leftBlock->get_op_array(DES_CRECOMP).get_local_element(i)[j]);
}
}
}
}
SplitStackmem();
dmrginp.tensormultiply->start();
#pragma omp parallel for schedule(dynamic)
for (int i = 0; i<allops.size(); i++) {
onedot_noise(allops[i]);
}
dmrginp.tensormultiply->stop();
MergeStackmem();
accumulateMultiThread(this, dm, numthrds);
distributedaccumulate(*this);
}
}