We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Running lux on keras model which return probability for only one class an error occurs.
Code: `#create daatframe with columns names as strings (LUX accepts only DataFrames withj string columns names) iris = datasets.load_iris() features = ['sepal_length','sepal_width','petal_length','petal_width'] target = 'class' df_iris = pd.DataFrame(iris.data,columns=features) df_iris[target] = iris.target nn_model.fit(train[features],train[target])
#train classifier train, test = train_test_split(df_iris)
input_shape=(train[features].shape[1],) nn_model = Sequential() nn_model.add(Dense(10, activation='relu', input_shape=input_shape)) nn_model.add(Dense(10, activation='relu')) nn_model.add(Dense(2, activation="sigmoid")) nn_model.add(Dense(10, activation='relu')) nn_model.add(Dense(1, activation="sigmoid")) nn_model.compile(optimizer=Adam(0.01), loss='categorical_crossentropy')
#pick some instance from datasetr iris_instance = train[features].sample(1).values iris_instance
lux = LUX(predict_proba = nn_model.predict, neighborhood_size=20, max_depth=2, node_size_limit = 1, grow_confidence_threshold = 0 ) lux.fit(train[features], train[target], instance_to_explain=iris_instance,class_names=[0,1,2])
#see the justification of the instance being classified for a given class lux.justify(np.array(iris_instance)) `
ERROR:
` InvalidParameterError Traceback (most recent call last) in <cell line: 28>() 26 27 lux = LUX(predict_proba = nn_model.predict, neighborhood_size=20, max_depth=2, node_size_limit = 1, grow_confidence_threshold = 0 ) ---> 28 lux.fit(train[features], train[target], instance_to_explain=iris_instance,class_names=[0,1,2]) 29 30 #see the justification of the instance being classified for a given class
5 frames /usr/local/lib/python3.10/dist-packages/sklearn/utils/_param_validation.py in validate_parameter_constraints(parameter_constraints, params, caller_name) 95 ) 96 ---> 97 raise InvalidParameterError( 98 f"The {param_name!r} parameter of {caller_name} must be" 99 f" {constraints_str}. Got {param_val!r} instead."
InvalidParameterError: The 'n_neighbors' parameter of NearestNeighbors must be an int in the range [1, inf) or None. Got 0 instead. `
The text was updated successfully, but these errors were encountered:
sbobek
No branches or pull requests
Running lux on keras model which return probability for only one class an error occurs.
Code:
`#create daatframe with columns names as strings (LUX accepts only DataFrames withj string columns names)
iris = datasets.load_iris()
features = ['sepal_length','sepal_width','petal_length','petal_width']
target = 'class'
df_iris = pd.DataFrame(iris.data,columns=features)
df_iris[target] = iris.target
nn_model.fit(train[features],train[target])
#train classifier
train, test = train_test_split(df_iris)
input_shape=(train[features].shape[1],)
nn_model = Sequential()
nn_model.add(Dense(10, activation='relu',
input_shape=input_shape))
nn_model.add(Dense(10, activation='relu'))
nn_model.add(Dense(2, activation="sigmoid"))
nn_model.add(Dense(10, activation='relu'))
nn_model.add(Dense(1, activation="sigmoid"))
nn_model.compile(optimizer=Adam(0.01), loss='categorical_crossentropy')
#pick some instance from datasetr
iris_instance = train[features].sample(1).values
iris_instance
lux = LUX(predict_proba = nn_model.predict, neighborhood_size=20, max_depth=2, node_size_limit = 1, grow_confidence_threshold = 0 )
lux.fit(train[features], train[target], instance_to_explain=iris_instance,class_names=[0,1,2])
#see the justification of the instance being classified for a given class
lux.justify(np.array(iris_instance)) `
ERROR:
` InvalidParameterError Traceback (most recent call last)
in <cell line: 28>()
26
27 lux = LUX(predict_proba = nn_model.predict, neighborhood_size=20, max_depth=2, node_size_limit = 1, grow_confidence_threshold = 0 )
---> 28 lux.fit(train[features], train[target], instance_to_explain=iris_instance,class_names=[0,1,2])
29
30 #see the justification of the instance being classified for a given class
5 frames
/usr/local/lib/python3.10/dist-packages/sklearn/utils/_param_validation.py in validate_parameter_constraints(parameter_constraints, params, caller_name)
95 )
96
---> 97 raise InvalidParameterError(
98 f"The {param_name!r} parameter of {caller_name} must be"
99 f" {constraints_str}. Got {param_val!r} instead."
InvalidParameterError: The 'n_neighbors' parameter of NearestNeighbors must be an int in the range [1, inf) or None. Got 0 instead. `
The text was updated successfully, but these errors were encountered: