-
Notifications
You must be signed in to change notification settings - Fork 0
/
sift_surf.py
67 lines (55 loc) · 2.36 KB
/
sift_surf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#today's final attempt
#Rough
import numpy as np
import cv2
from matplotlib import pyplot as plt
MIN_MATCH_COUNT = 10
img1 = cv2.imread('xx.jpg',0) # queryImage
img2 = cv2.imread('xy.jpg',0) # trainImage
# Initiate SIFT detector
sift=cv2.xfeatures2d.SIFT_create()
surf=cv2.xfeatures2d.SURF_create()
orb=cv2.ORB_create()
# find the keypoints and descriptors with SIFT
kp1, des1 = sift.detectAndCompute(img1,None)
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=False)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
#matches = bf.match(des1,des2)
matches = flann.knnMatch(des1,des2,k=2)
good=[]
# store all the good matches as per Lowe's ratio test.
#matches = sorted(matches, key = lambda x:x.distance)
#good=matches
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = img1.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
img2 = cv2.polylines(img2,[np.int32(dst)],True,255,3, cv2.LINE_AA)
else:
print("Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT))
matchesMask = None
row1,col1=np.shape(img1)
row2,col2=np.shape(img2)
#reference: https://github.com/opencv/opencv/issues/6072
'''draw_params = dict(matchColor = (0,255,0), # draw matches in green color
singlePointColor = None,
matchesMask = matchesMask, # draw only inliers
flags = 2)
img3 = cv2.drawMatches(img1,kp1,img2,kp2,good,None,**draw_params)'''
end1 = tuple(np.round(kp1[m.queryIdx].pt).astype(int))
#end2 = tuple(np.round(kp2[m.queryIdx].pt).astype(int) + np.array([img1.shape[1], 0]))
end2 = tuple(np.round(kp2[m.trainIdx].pt).astype(int) ) #np.array([img1.shape[1], 0]))
ic1=np.delete(img1,slice(end1[1],col1),axis=1)
ic2=np.delete(img2,slice(0,end2[1]),axis=1)
ixf=np.concatenate((ic1,ic2),axis=1)