diff --git a/AgriDataValue/data_search.ipynb b/AgriDataValue/data_search.ipynb new file mode 100644 index 0000000..0418d18 --- /dev/null +++ b/AgriDataValue/data_search.ipynb @@ -0,0 +1,879 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Search for available data\n", + "\n", + "Before downloading satellite data it is important to know exactly which data is available and what kind of properties it has. Sentinel Hub offers the [Catalog API](#Sentinel-Hub-Catalog-API) to search collections of data. In AgriDataValue, the components consuming the data from the Climate Change / CAP compliance toolbox, can use the Catalog API responses to know which imagery /indicatore are available in the toolbox. \n", + "\n", + "In this example tutorial we will show how to use the service to find data collections and then download data from them. " + ] + }, + { + "cell_type": "code", + "execution_count": 157, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import datetime as dt\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "from sentinelhub import CRS, BBox, DataCollection, SHConfig" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sentinel Hub Catalog API\n", + "\n", + "Catalog API is the main service with the most configurable search options. It supports searches over all available data collections and provides the most information about each item in a collection. The implementation is based on [STAC REST API specifications](https://stacspec.org/).\n", + "\n", + "More information about the service is available in:\n", + "\n", + "- [Documentation](https://docs.sentinel-hub.com/api/latest/api/catalog)\n", + "- [API definition](https://docs.sentinel-hub.com/api/latest/reference/#tag/Capabilities)\n", + "\n", + "\n", + "### Prerequisites\n", + "\n", + "BYOC API requires Sentinel Hub account. Please see [configuration instructions](https://sentinelhub-py.readthedocs.io/en/latest/configure.html) how to set up your configuration." + ] + }, + { + "cell_type": "code", + "execution_count": 158, + "metadata": {}, + "outputs": [], + "source": [ + "config = SHConfig()\n", + "\n", + "if config.sh_client_id == \"\" or config.sh_client_secret == \"\":\n", + " print(\"Warning! To use Sentinel Hub Catalog API, please provide the credentials (client ID and client secret).\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Available data collections\n", + "\n", + "In the first, step let's initialize a `SentinelHubCatalog` class and check basic service info:" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'type': 'Catalog',\n", + " 'stac_version': '1.0.0',\n", + " 'id': 'sentinel-hub',\n", + " 'title': 'Sentinel Hub STAC catalog',\n", + " 'description': 'STAC v1.0.0 implementation by Sentinel Hub',\n", + " 'conformsTo': ['http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core',\n", + " 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30',\n", + " 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson',\n", + " 'https://api.stacspec.org/v1.0.0/core',\n", + " 'https://api.stacspec.org/v1.0.0/collections',\n", + " 'https://api.stacspec.org/v1.0.0/ogcapi-features',\n", + " 'https://api.stacspec.org/v1.0.0/ogcapi-features#fields',\n", + " 'https://api.stacspec.org/v1.0.0/ogcapi-features#context',\n", + " 'https://api.stacspec.org/v1.0.0/ogcapi-features#filter',\n", + " 'https://api.stacspec.org/v1.0.0/item-search',\n", + " 'https://api.stacspec.org/v1.0.0/item-search#fields',\n", + " 'https://api.stacspec.org/v1.0.0/item-search#context',\n", + " 'https://api.stacspec.org/v1.0.0/item-search#filter',\n", + " 'http://www.opengis.net/spec/ogcapi-features-3/1.0/conf/filter',\n", + " 'http://www.opengis.net/spec/ogcapi-features-3/1.0/conf/features-filter',\n", + " 'http://www.opengis.net/spec/cql2/1.0/conf/cql2-text',\n", + " 'http://www.opengis.net/spec/cql2/1.0/conf/cql2-json',\n", + " 'http://www.opengis.net/spec/cql2/1.0/conf/basic-cql2'],\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'data',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/conformance',\n", + " 'rel': 'conformance',\n", + " 'type': 'application/json',\n", + " 'title': 'STAC conformance classes implemented by this server'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/search',\n", + " 'rel': 'search',\n", + " 'type': 'application/geo+json',\n", + " 'title': 'STAC search',\n", + " 'method': 'GET'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/search',\n", + " 'rel': 'search',\n", + " 'type': 'application/geo+json',\n", + " 'title': 'STAC search',\n", + " 'method': 'POST'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-2-l1c',\n", + " 'rel': 'child',\n", + " 'type': 'application/json',\n", + " 'title': 'Sentinel 2 L1C'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-1-grd',\n", + " 'rel': 'child',\n", + " 'type': 'application/json',\n", + " 'title': 'Sentinel 1 GRD'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-2-l2a',\n", + " 'rel': 'child',\n", + " 'type': 'application/json',\n", + " 'title': 'Sentinel 2 L2A'},\n", + " {'href': 'https://docs.sentinel-hub.com/api/latest/reference/openapi.v1.yaml',\n", + " 'rel': 'service-desc',\n", + " 'type': 'application/vnd.oai.openapi;version=\"3.1\"',\n", + " 'title': 'OpenAPI service description'},\n", + " {'href': 'https://docs.sentinel-hub.com/api/latest/reference/#tag/catalog_core',\n", + " 'rel': 'service-doc',\n", + " 'type': 'text/html',\n", + " 'title': 'OpenAPI service documentation'}]}" + ] + }, + "execution_count": 159, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sentinelhub import SentinelHubCatalog\n", + "\n", + "catalog = SentinelHubCatalog(config=config)\n", + "\n", + "catalog.get_info()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Each data collection has its own catalog collection. The default collections are already listed in the info response. Information about all available collections, including user-defined [BYOC](https://docs.sentinel-hub.com/api/latest/data/byoc/) and [batch](https://docs.sentinel-hub.com/api/latest/api/batch/) collections, can be obtained with the next example.\n", + "\n", + "The following code will obtain information about all AgriDataValue collections that are published as BYOC collection. \n", + "Note that these collections are currently stored on a project-internal account, so running this code without appropriate credentials linked to that account will not provide the same response. " + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'stac_version': '1.0.0',\n", + " 'stac_extensions': ['https://stac-extensions.github.io/scientific/v1.0.0/schema.json',\n", + " 'https://stac-extensions.github.io/eo/v1.0.0/schema.json'],\n", + " 'type': 'Collection',\n", + " 'id': 'sentinel-2-l2a',\n", + " 'title': 'Sentinel 2 L2A',\n", + " 'description': 'Sentinel 2 imagery processed to level 2A',\n", + " 'sci:citation': 'Modified Copernicus Sentinel data [Year]/Sentinel Hub',\n", + " 'license': 'proprietary',\n", + " 'providers': [{'name': 'ESA',\n", + " 'roles': ['producer'],\n", + " 'url': 'https://esa.int/'},\n", + " {'name': 'AWS', 'roles': ['host'], 'url': 'https://aws.amazon.com/'},\n", + " {'name': 'Sinergise',\n", + " 'roles': ['processor'],\n", + " 'url': 'https://www.sinergise.com/'}],\n", + " 'extent': {'spatial': {'bbox': [[-180.0, -56.0, 180.0, 83.0]]},\n", + " 'temporal': {'interval': [['2016-11-01T00:00:00Z', None]]}},\n", + " 'summaries': {'platform': ['sentinel-2a', 'sentinel-2b'],\n", + " 'instrument': ['msi'],\n", + " 'constellation': ['sentinel-2'],\n", + " 'gsd': [10],\n", + " 'eo:cloud_cover': {'minimum': 0, 'maximum': 100},\n", + " 'eo:bands': [{'name': 'B01',\n", + " 'common_name': 'coastal',\n", + " 'center_wavelength': 0.4427,\n", + " 'full_width_half_max': 0.021},\n", + " {'name': 'B02',\n", + " 'common_name': 'blue',\n", + " 'center_wavelength': 0.4924,\n", + " 'full_width_half_max': 0.066},\n", + " {'name': 'B03',\n", + " 'common_name': 'green',\n", + " 'center_wavelength': 0.5598,\n", + " 'full_width_half_max': 0.036},\n", + " {'name': 'B04',\n", + " 'common_name': 'red',\n", + " 'center_wavelength': 0.6646,\n", + " 'full_width_half_max': 0.031},\n", + " {'name': 'B05', 'center_wavelength': 0.7041, 'full_width_half_max': 0.015},\n", + " {'name': 'B06', 'center_wavelength': 0.7405, 'full_width_half_max': 0.015},\n", + " {'name': 'B07', 'center_wavelength': 0.7828, 'full_width_half_max': 0.02},\n", + " {'name': 'B08',\n", + " 'common_name': 'nir',\n", + " 'center_wavelength': 0.8328,\n", + " 'full_width_half_max': 0.106},\n", + " {'name': 'B8A',\n", + " 'common_name': 'nir08',\n", + " 'center_wavelength': 0.8647,\n", + " 'full_width_half_max': 0.021},\n", + " {'name': 'B09',\n", + " 'common_name': 'nir09',\n", + " 'center_wavelength': 0.9451,\n", + " 'full_width_half_max': 0.02},\n", + " {'name': 'B11',\n", + " 'common_name': 'swir16',\n", + " 'center_wavelength': 1.6137,\n", + " 'full_width_half_max': 0.091},\n", + " {'name': 'B12',\n", + " 'common_name': 'swir22',\n", + " 'center_wavelength': 2.2024,\n", + " 'full_width_half_max': 0.175}]},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-2-l2a',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-2-l2a/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/sentinel-2-l2a/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]}" + ] + }, + "execution_count": 160, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "catalog.get_collection(DataCollection.SENTINEL2_L2A)" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'title': 'ADV - indicators - tavg',\n", + " 'description': 'ADV - indicators - tavg',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-13d40522-205b-42e8-8b34-4ddb27fd3452',\n", + " 'title': 'ADV - indicators - evapo',\n", + " 'description': 'ADV - indicators - evapo',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.47473, 34.64027, 34.62527, 70.04027]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-13d40522-205b-42e8-8b34-4ddb27fd3452',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-13d40522-205b-42e8-8b34-4ddb27fd3452/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-13d40522-205b-42e8-8b34-4ddb27fd3452/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-6777e5d3-3309-4771-a38a-79addcf31d36',\n", + " 'title': 'ADV - indicators - tmax',\n", + " 'description': 'ADV - indicators - tmax',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-6777e5d3-3309-4771-a38a-79addcf31d36',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-6777e5d3-3309-4771-a38a-79addcf31d36/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-6777e5d3-3309-4771-a38a-79addcf31d36/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-85909905-6d7a-4181-bc21-21188861df88',\n", + " 'title': 'ADV - indicators - tmin',\n", + " 'description': 'ADV - indicators - tmin',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-85909905-6d7a-4181-bc21-21188861df88',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-85909905-6d7a-4181-bc21-21188861df88/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-85909905-6d7a-4181-bc21-21188861df88/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-97e95ed8-51ce-4f55-a41b-73d957743c52',\n", + " 'title': 'ADV - indicators - mrsos',\n", + " 'description': 'ADV - indicators - mrsos',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-97e95ed8-51ce-4f55-a41b-73d957743c52',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-97e95ed8-51ce-4f55-a41b-73d957743c52/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-97e95ed8-51ce-4f55-a41b-73d957743c52/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-9ca6af76-4e65-4497-97d2-474c5e67d7b9',\n", + " 'title': 'ADV - indicators - nsat',\n", + " 'description': 'ADV - indicators - nsat',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.47473, 34.64027, 34.62527, 70.04027]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-9ca6af76-4e65-4497-97d2-474c5e67d7b9',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-9ca6af76-4e65-4497-97d2-474c5e67d7b9/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-9ca6af76-4e65-4497-97d2-474c5e67d7b9/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]},\n", + " {'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-f04e2207-04ce-47f2-af2e-9089cb0ec1fb',\n", + " 'title': 'ADV - indicators - nsrh',\n", + " 'description': 'ADV - indicators - nsrh',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-f04e2207-04ce-47f2-af2e-9089cb0ec1fb',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-f04e2207-04ce-47f2-af2e-9089cb0ec1fb/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-f04e2207-04ce-47f2-af2e-9089cb0ec1fb/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]}]" + ] + }, + "execution_count": 161, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "collections = catalog.get_collections()\n", + "\n", + "collections = [collection for collection in collections if collection[\"title\"].startswith((\"ADV - indicators\"))]\n", + "collections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Information about a single collection can also be obtained with the following method:" + ] + }, + { + "cell_type": "code", + "execution_count": 162, + "metadata": {}, + "outputs": [], + "source": [ + "collection_ids = [c[\"id\"] for c in collections]" + ] + }, + { + "cell_type": "code", + "execution_count": 163, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'stac_version': '1.0.0',\n", + " 'stac_extensions': [],\n", + " 'type': 'Collection',\n", + " 'id': 'byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'title': 'ADV - indicators - tavg',\n", + " 'description': 'ADV - indicators - tavg',\n", + " 'license': 'proprietary',\n", + " 'keywords': ['has_tiles_with_sensing_time'],\n", + " 'providers': [],\n", + " 'extent': {'spatial': {'bbox': [[-10.474726713,\n", + " 34.640273188,\n", + " 34.625273287,\n", + " 70.040273188]]},\n", + " 'temporal': {'interval': [['2024-01-01T00:00:00Z',\n", + " '2024-01-01T00:00:00Z']]}},\n", + " 'summaries': {},\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'rel': 'self',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324/queryables',\n", + " 'rel': 'http://www.opengis.net/def/rel/ogc/1.0/queryables',\n", + " 'type': 'application/schema+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324/items',\n", + " 'rel': 'items',\n", + " 'type': 'application/geo+json'}]}" + ] + }, + "execution_count": 163, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "catalog.get_collection(collection_ids[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Search features in catalog collections" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For search we can use `SentinelHubCatalog.search` method. The method always requires a data collection, time interval and a bounding box or a geometry. Additionally, we can define various STAC-based query filters which are described in [documentation](https://docs.sentinel-hub.com/api/latest/api/catalog/) and [API definition](https://docs.sentinel-hub.com/api/latest/reference/#operation/postSearchSTAC)." + ] + }, + { + "cell_type": "code", + "execution_count": 164, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'id': '112a388d-1ac3-454a-bae8-9afe14ae47fe',\n", + " 'properties': {'datetime': '2024-01-01T00:00:00Z'}}]" + ] + }, + "execution_count": 164, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bbox = BBox(bbox=[-12.128906, 34.885931, 40.781250, 71.965388], crs=CRS.WGS84).transform(CRS.POP_WEB)\n", + "time_interval = \"2020-12-10\", \"2024-02-01\"\n", + "\n", + "search_iterator = catalog.search(\n", + " collection_ids[0],\n", + " bbox=bbox,\n", + " time=time_interval,\n", + " fields={\"include\": [\"id\", \"properties.datetime\", \"eo:bands\"], \"exclude\": []},\n", + ")\n", + "\n", + "results = list(search_iterator)\n", + "results" + ] + }, + { + "cell_type": "code", + "execution_count": 165, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'stac_version': '1.0.0',\n", + " 'stac_extensions': ['https://stac-extensions.github.io/projection/v1.0.0/schema.json'],\n", + " 'id': '112a388d-1ac3-454a-bae8-9afe14ae47fe',\n", + " 'type': 'Feature',\n", + " 'geometry': {'type': 'Polygon',\n", + " 'crs': {'type': 'name',\n", + " 'properties': {'name': 'urn:ogc:def:crs:OGC::CRS84'}},\n", + " 'coordinates': [[[-10.474726712999939, 34.640273188000045],\n", + " [34.62527328700006, 34.640273188000045],\n", + " [34.62527328700006, 70.04027318800004],\n", + " [-10.474726712999939, 70.04027318800004],\n", + " [-10.474726712999939, 34.640273188000045]]]},\n", + " 'bbox': [-10.474726712999939,\n", + " 34.640273188000045,\n", + " 34.62527328700006,\n", + " 70.04027318800004],\n", + " 'properties': {'datetime': '2024-01-01T00:00:00Z',\n", + " 'proj:epsg': 84,\n", + " 'proj:bbox': [-10.474726712999939,\n", + " 34.640273188000045,\n", + " 34.62527328700006,\n", + " 70.04027318800004],\n", + " 'proj:geometry': {'type': 'Polygon',\n", + " 'crs': {'type': 'name',\n", + " 'properties': {'name': 'urn:ogc:def:crs:OGC::CRS84'}},\n", + " 'coordinates': [[[-10.474726712999939, 34.640273188000045],\n", + " [34.62527328700006, 34.640273188000045],\n", + " [34.62527328700006, 70.04027318800004],\n", + " [-10.474726712999939, 70.04027318800004],\n", + " [-10.474726712999939, 34.640273188000045]]]}},\n", + " 'assets': {},\n", + " 'collection': 'byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'links': [{'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/',\n", + " 'rel': 'root',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324/items/112a388d-1ac3-454a-bae8-9afe14ae47fe',\n", + " 'rel': 'self',\n", + " 'type': 'application/geo+json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'rel': 'parent',\n", + " 'type': 'application/json'},\n", + " {'href': 'https://services.sentinel-hub.com/api/v1/catalog/1.0.0/collections/byoc-088697b8-d145-4ff3-bbb2-87bd94ea0324',\n", + " 'rel': 'collection',\n", + " 'type': 'application/json'}]}" + ] + }, + "execution_count": 165, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "catalog.get_feature(collection_ids[0], \"112a388d-1ac3-454a-bae8-9afe14ae47fe\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Combine Catalog API with Process API\n", + "\n", + "With Catalog API we were able to get information about available tiles for a given bounding box and time interval. Let's see how we can use this information with [Process API](./process_request.ipynb) to download data for all acquisitions.\n", + "\n", + "We can see that many timestamps differ only for a few seconds. That is because they are from tiles in the same orbit acquisition. Because of that, we want to join them together in a single timestamp." + ] + }, + { + "cell_type": "code", + "execution_count": 166, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[datetime.datetime(2024, 1, 1, 0, 0, tzinfo=tzutc())]" + ] + }, + "execution_count": 166, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sentinelhub import MimeType, SentinelHubDownloadClient, SentinelHubRequest, bbox_to_dimensions, filter_times\n", + "\n", + "time_difference = dt.timedelta(hours=1)\n", + "\n", + "all_timestamps = search_iterator.get_timestamps()\n", + "unique_acquisitions = filter_times(all_timestamps, time_difference)\n", + "\n", + "unique_acquisitions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we create a Process API request for each acquisition:" + ] + }, + { + "cell_type": "code", + "execution_count": 167, + "metadata": {}, + "outputs": [], + "source": [ + "indicator_evalscript = \"\"\"\n", + " //VERSION=3\n", + "\n", + " function setup() {\n", + " return {\n", + " input: [{\n", + " bands: [\"tavg_ref_1995_2015\"]\n", + " }],\n", + " output: {\n", + " bands: 1, sampleType: SampleType.FLOAT32\n", + " }\n", + " };\n", + " }\n", + "\n", + " function evaluatePixel(sample) {\n", + " return [sample.tavg_ref_1995_2015];\n", + " }\n", + "\"\"\"\n", + "\n", + "\n", + "process_requests = []\n", + "\n", + "for timestamp in unique_acquisitions:\n", + " request = SentinelHubRequest(\n", + " evalscript=indicator_evalscript,\n", + " input_data=[\n", + " SentinelHubRequest.input_data(\n", + " data_collection=DataCollection.define_byoc(collection_ids[0].split(\"byoc-\")[1]),\n", + " time_interval=(timestamp - time_difference, timestamp + time_difference),\n", + " )\n", + " ],\n", + " responses=[SentinelHubRequest.output_response(\"default\", MimeType.TIFF)],\n", + " bbox=bbox,\n", + " resolution=(10000, 10000), \n", + " config=config,\n", + " )\n", + " process_requests.append(request)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to efficiently download data for all requests in parallel, we extract download information and pass it to a download client." + ] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "CPU times: user 26.5 ms, sys: 10.6 ms, total: 37.1 ms\n", + "Wall time: 1.12 s\n" + ] + }, + { + "data": { + "text/plain": [ + "(759, 589)" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%%time\n", + "\n", + "client = SentinelHubDownloadClient(config=config)\n", + "\n", + "download_requests = [request.download_list[0] for request in process_requests]\n", + "\n", + "data = client.download(download_requests)\n", + "\n", + "data[0].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 169, + "metadata": {}, + "outputs": [], + "source": [ + "indicator = np.where(data[0] < 0.1, np.nan, data[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 173, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Average Temperature (Historical 1995-2015)')" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAo0AAANECAYAAADVPRWFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydeZwcVbn+n6qeyWRjspGFJQmrkgiIBCHDvudiAIEgi1wWRb1gQISrIPdyhSACigrqhQAu4EX4sSiLoIhhFSFsQZBdVgOYBQPZk0mm6/z+qD7V55w6p5Zepnt6nu/nM5/prjpVdaqnZ/qZ5z3v+3pCCAFCCCGEEEIS8Bs9AUIIIYQQ0vxQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkJIL3Drrbdi5MiRWLlyZcXnuP766+F5Ht55553aTaxKLrjgAnieV7fzn3TSSdhss83qdn6Sj29961vYZZddGj0N0iAoGklTcdVVV8HzPP5RUpAfymlfe++9d6On2jBefvllXHDBBU0lplSKxSLOP/98nH766Rg6dGi0fbPNNsPBBx9sPebhhx+G53n4zW9+U9W1V69ejQsuuAAPP/xwVedpdp566il89atfxZQpU9De3p4oZBctWoQvfOELGDNmDAYNGoQdd9wRt912m3XszTffjB133BEDBw7E6NGjcfLJJ+Nf//pXbJzr9/LSSy9NnXsQBLj++utx6KGHYvz48RgyZAi23XZbXHTRRVi7dq31mF/84heYNGkSBg4ciK233ho//elPY2Nee+01nHnmmdh1110xcODAxH84NttsM+v8TznlFG3c17/+dTz//PP43e9+l3pfpPVoa/QECFG58cYbsdlmm+Gpp57CG2+8ga222qrRU2o4RxxxhPY6rFy5EqeeeioOP/xwHHHEEdH2sWPHNmJ6TcHLL7+MWbNmYe+9925KV+ruu+/Ga6+9hq985StVnef444/HMcccg46OjszHrF69GrNmzQKAuvxjcd555+Fb3/pWzc+blz/84Q/4+c9/ju233x5bbLEF/v73v1vHLV++HLvvvjsWLVqEM844A+PGjcOtt96Ko446CjfeeCM+//nPR2Nnz56Nr371q9hvv/3wox/9CO+99x5+/OMf45lnnsGTTz6JgQMHauc+4IADcMIJJ2jbPvWpT6XOffXq1fjCF76AqVOn4pRTTsGYMWMwd+5cnH/++XjggQfw4IMPaiL4mmuuwSmnnIIZM2bgrLPOwqOPPoqvfe1rWL16Nc4555xo3Ny5c/GTn/wEkydPxqRJk/Dcc88lzmOHHXbAf/7nf2rbPvaxj2nPx40bh89+9rP4wQ9+gEMPPTT13kiLIQhpEt566y0BQNx+++1i9OjR4oILLuj1ORSLRbFmzZpev24ePvjgAwFAnH/++Y2eSt1YuXJlrvG33XabACAeeuihhs7DxaGHHip233332PaJEyeK6dOnW4956KGHBABx2223VXXter1favXapHHiiSeKiRMnpo5buHChWL16tRBCiJkzZwrXx9v3v/99AUA88MAD0bZisSg+/elPi3Hjxonu7m4hhBDd3d1i+PDhYs899xRBEERj7777bgFA/OQnP9HOC0DMnDkz7+1F13rsscdi22fNmiUAiDlz5kTbVq9eLUaNGhV73xx33HFiyJAh4sMPP4y2LVmyRCxfvlwIIcRll10mAIi3337bOoek96LJb37zG+F5nnjzzTczjSetA8PTpGm48cYbMWLECEyfPh1HHnkkbrzxxmjf+vXrMXLkSHzhC1+IHbd8+XIMHDgQ3/jGN6Jt3d3dOP/887HVVluho6MD48ePx9lnn43u7m7tWM/zcNppp+HGG2/EJz7xCXR0dOCPf/wjAOAHP/gBdt11V4waNQqDBg3ClClTrKHCNWvW4Gtf+xo23HBDbLDBBjj00EPx/vvvw/M8XHDBBdrY999/H1/84hcxduxYdHR04BOf+AR++ctfVvOyRbz66qs48sgjMXLkSAwcOBA77bRTLIQk18T95S9/wde+9jWMHj0aw4cPx3/8x39g3bp1WLp0KU444QSMGDECI0aMwNlnnw0hRHT8O++8A8/z8IMf/ACXX345Jk6ciEGDBmGvvfbCiy++WNWcHnnkEXz1q1/FmDFjsOmmmwIA/vGPf+CrX/0qPv7xj2PQoEEYNWoUPve5z2khtuuvvx6f+9znAAD77LNPFFaT4VjbzwEIw3EnnXRSpnkAwL333os99tgDQ4YMwQYbbIDp06fjpZdeSv25rF27Fn/84x+x//77p45Nw7am8ZlnnsG0adOw4YYbYtCgQdh8883xxS9+EUD48xo9ejQAYNasWdFro74eDz74YHRfw4cPx2c/+1m88sor2nXlEomXX34Zn//85zFixAjsvvvu2j6TX//619h5550xePBgjBgxAnvuuSf+9Kc/RfvvuusuTJ8+HRtvvDE6Ojqw5ZZb4jvf+Q6KxWJFr83YsWMxaNCg1HGPPvooRo8ejX333Tfa5vs+jjrqKCxcuBCPPPIIAODFF1/E0qVLcfTRR2v3d/DBB2Po0KG4+eabredfs2aNM6TsYsCAAdh1111j2w8//HAA0H4eDz30EJYsWYKvfvWr2tiZM2di1apV+P3vfx9tGzlyJDbYYINcc1m3bh1WrVqVOEa+l++6665c5yZ9H4anSdNw44034ogjjsCAAQNw7LHHYvbs2Xj66afx6U9/Gu3t7Tj88MNx++2345prrsGAAQOi4+688050d3fjmGOOARCuDzr00EPxl7/8BV/5ylcwadIkvPDCC7j88svx97//HXfeead23QcffBC33norTjvtNGy44YZRePPHP/4xDj30UBx33HFYt24dbr75Znzuc5/DPffcg+nTp0fHn3TSSbj11ltx/PHHY+rUqXjkkUe0/ZJFixZh6tSpkVAdPXo07r33Xpx88slYvnw5vv71r1f82r300kvYbbfdsMkmm+Bb3/oWhgwZgltvvRWHHXYYfvvb30YfPpLTTz8d48aNw6xZs/DEE0/g2muvxfDhw/H4449jwoQJuPjii/GHP/wBl112GbbddttYyO3//u//sGLFCsycORNr167Fj3/8Y+y777544YUXojB53jl99atfxejRo/Htb387+tB6+umn8fjjj+OYY47BpptuinfeeQezZ8/G3nvvjZdffhmDBw/Gnnvuia997Wv4yU9+gv/6r//CpEmTACD6nhfbPG644QaceOKJmDZtGr73ve9h9erVmD17NnbffXf89a9/TQyJz5s3D+vWrcOOO+5o3b9+/XrrGrlly5alznXx4sU48MADMXr0aHzrW9/C8OHD8c477+D2228HAIwePRqzZ8+OLWfYfvvtAQD3338/DjroIGyxxRa44IILsGbNGvz0pz/FbrvthmeffTZ2X5/73Oew9dZb4+KLL9b+mTCZNWsWLrjgAuy666648MILMWDAADz55JN48MEHceCBBwIIBfDQoUNx1llnYejQoXjwwQfx7W9/G8uXL8dll12Weu+V0t3dbRWXgwcPBhD+vA444IDoH0zb2EGDBuGvf/0rgiCA75e9l+uvvx5XXXUVhBCYNGkSzjvvPC3cnZeFCxcCADbccMNo21//+lcAwE477aSNnTJlCnzfx1//+lf8+7//e0XXe/DBBzF48GAUi0VMnDgRZ555Js4444zYuGHDhmHLLbfEY489hjPPPLOia5E+SoOdTkKEEEI888wzWhgmCAKx6aabijPOOCMac9999wkA4u6779aO/cxnPiO22GKL6PkNN9wgfN8Xjz76qDbu6quvFgC0MBAA4fu+eOmll2JzkqEuybp168S2224r9t1332jbvHnzBADx9a9/XRt70kknxUKCJ598sthoo43Ev/71L23sMcccI4YNGxa7ngtbuHG//fYT2223nVi7dm20LQgCseuuu4qtt9462nbdddcJAGLatGlayK2rq0t4nidOOeWUaFtPT4/YdNNNxV577RVte/vttwUAMWjQIPHee+9F25988kkBQJx55pkVz2n33XcXPT092r3aXpO5c+cKAOL//u//om1J4WnztZJMnDhRnHjiianzWLFihRg+fLj48pe/rB2/cOFCMWzYsNh2k5///OcCgHjhhRescwCQ+KWGp+UcZYjxjjvuEADE008/7bx+Unh6hx12EGPGjBFLliyJtj3//PPC931xwgknRNvOP/98AUAce+yxsXPIfZLXX39d+L4vDj/8cFEsFrWx6nvO9rP9j//4DzF48GDtPZM1PK2SFJ4+/fTThe/74p133tG2H3PMMQKAOO2004QQ4evmeZ44+eSTtXGvvvpq9LNRf5d33XVXccUVV4i77rpLzJ49W2y77bYCgLjqqqtyzV1l//33F52dneKjjz7S7q1QKFjHjx49WhxzzDHWfWnh6UMOOUR873vfE3feeaf4xS9+IfbYYw8BQJx99tnW8QceeKCYNGlSrvshfR+Gp0lTcOONN2Ls2LHYZ599AIQhxaOPPho333xzFK7ad999seGGG+KWW26Jjvvoo48wZ84cHH300dG22267DZMmTcI222yDf/3rX9GXDEc99NBD2rX32msvTJ48OTYn1WH46KOPsGzZMuyxxx549tlno+0ylG2Gik4//XTtuRACv/3tb3HIIYdACKHNa9q0aVi2bJl23jx8+OGHePDBB3HUUUdhxYoV0XmXLFmCadOm4fXXX8f777+vHXPyySdrIbdddtkFQgicfPLJ0bZCoYCddtoJb731Vuyahx12GDbZZJPo+c4774xddtkFf/jDHyqe05e//GUUCgVtm/ozWL9+PZYsWYKtttoKw4cPr/j1SsOcx5w5c7B06VIce+yx2s+tUChgl112ib2fTJYsWQIAGDFihHX/Lrvsgjlz5sS+fvCDH6TOdfjw4QCAe+65B+vXr894hyELFizAc889h5NOOgkjR46Mtm+//fY44IADop+liplJa+POO+9EEAT49re/rblwALT3nPqzle+RPfbYA6tXr8arr76a617y8KUvfQmFQgFHHXUUHn/8cbz55pu45JJLcMcddwAIw8tA6O4dddRR+NWvfoUf/vCHeOutt/Doo4/i6KOPRnt7uzYWAB577DGcccYZOPTQQ3HKKadg3rx52HbbbfFf//Vf2risXHzxxbj//vtx6aWXRj9neU010qIycODAiq4FAL/73e9w9tln47Of/Sy++MUv4pFHHsG0adOiBCCTESNGWB1y0towPE0aTrFYxM0334x99tkHb7/9drR9l112wQ9/+EM88MADOPDAA9HW1oYZM2bgpptuQnd3Nzo6OnD77bdj/fr1mmh8/fXX8corr0RruUwWL16sPd98882t4+655x5cdNFFeO6557S1kOoH3z/+8Q/4vh87h5n1/cEHH2Dp0qW49tprce2112aaV1beeOMNCCHwP//zP/if//kf57lVkTdhwgRt/7BhwwAA48ePj23/6KOPYufbeuutY9s+9rGP4dZbb614Trafw5o1a3DJJZfguuuuw/vvv6+FRLOEbyvBnMfrr78OANoaOJXOzs5M5xWOcO6GG25oXe/Y1pb+53mvvfbCjBkzMGvWLFx++eXYe++9cdhhh+Hzn/98aob1P/7xDwDAxz/+8di+SZMm4b777sOqVaswZMiQaLvrd0XlzTffhO/71n/EVF566SWcd955ePDBB7F8+XJtX71+tkAoim+66Saccsop2G233QCEGcFXXHEFTj31VK0k0jXXXIM1a9bgG9/4RrRm+t///d+x5ZZb4vbbb9fGmgwYMACnnXZaJCB33313rFy5UqvTWSgUrH+nbrnlFpx33nk4+eSTceqpp2r7Bg0ahHXr1lmvuXbt2kzrOrPgeR7OPPNM3HfffXj44YdjIW8hRF3rc5LmhKKRNJwHH3wQCxYswM0332xdXH7jjTdG66COOeYYXHPNNbj33ntx2GGH4dZbb8U222yDT37yk9H4IAiw3Xbb4Uc/+pH1eqYwsv2RffTRR3HooYdizz33xFVXXYWNNtoI7e3tuO6663DTTTflvscgCACEHzgnnniidYxcZ1bpub/xjW9g2rRp1jGmiDUdvaTtLrFT6znZfg6nn346rrvuOnz9619HV1cXhg0bBs/zcMwxx0TXqBRXwoU5D3mdG264AePGjYuNTxN3o0aNAhC61WpiTS2QdRyfeOIJ3H333bjvvvvwxS9+ET/84Q/xxBNPJIqaSqiVIFm6dCn22msvdHZ24sILL8SWW26JgQMH4tlnn8U555xT9c82jSOPPBKHHnoonn/+eRSLRey4445R4pRaYmbYsGG46667MH/+fLzzzjuYOHEiJk6ciF133TVKIktC/q358MMPAYTJdbL8EQBMnDgxVjdxzpw5OOGEEzB9+nRcffXVsXNutNFGKBaLWLx4McaMGRNtX7duHZYsWYKNN944z0uRa/4qH330kbbWkvQPKBpJw7nxxhsxZswYXHnllbF9t99+O+644w5cffXVGDRoEPbcc09stNFGuOWWW7D77rvjwQcfxH//939rx2y55ZZ4/vnnsd9++1X8n/Bvf/tbDBw4EPfdd5/m2Fx33XXauIkTJyIIArz99tua+/bGG29o40aPHo0NNtgAxWKxJlm0KltssQUAoL29vebndiHdN5W///3vUeJEreb0m9/8BieeeCJ++MMfRtvWrl2LpUuXauOSfs4jRoyIjV+3bh0WLFiQaQ5bbrklAGDMmDEV3cs222wDAHj77bex3Xbb5T4+C1OnTsXUqVPx3e9+FzfddBOOO+443HzzzfjSl77kfG0mTpwIICwAbfLqq69iww031FzGrGy55ZYIggAvv/wydthhB+uYhx9+GEuWLMHtt9+OPffcM9quRhrqzYABA/DpT386en7//fcDgPVnPGHChMidX7p0KebNm4cZM2akXkMu7ZBu4gknnBBlnQNxEf7kk0/i8MMPx0477YRbb73V+g+JfE2feeYZfOYzn4m2P/PMMwiCwPmaV4I5f5W3335b+2ed9A+4ppE0lDVr1uD222/HwQcfjCOPPDL2ddppp2HFihVRmRbf93HkkUfi7rvvxg033ICenh4tNA0ARx11FN5//3387Gc/s14vrZwEEDpunudpbtQ777wTy7yWLtpVV12lbTe7MxQKBcyYMQO//e1vraVpPvjgg9Q5uRgzZgz23ntvXHPNNVYhVM25Xdx5553amsSnnnoKTz75JA466KCazqlQKMSczp/+9Kcxl1CKG1McAqGI+fOf/6xtu/baazOXdpk2bRo6Oztx8cUXW9cNpt3LlClTMGDAADzzzDOZrpeHjz76KPb6SNEgl1TIrGDztdloo42www474Fe/+pW278UXX8Sf/vQnTZDk4bDDDoPv+7jwwgtjjqGcq3S01bmvW7cu9nvUW7z++uu4+uqrcfDBB8eKWZuce+656Onp0bKGbe+BFStW4IorrsCGG26IKVOmAAj/mdp///2jLxkeB8KyOtOnT8dmm22Ge+65x+nq7rvvvhg5ciRmz56tbZ89ezYGDx5srdyQxocffhj7fVi/fj0uvfRSDBgwIFprLlm2bBnefPNNa5kg0trQaSQN5Xe/+x1WrFjh7CwwdepUjB49GjfeeGMkDo8++mj89Kc/xfnnn4/tttsuVlrl+OOPx6233opTTjkFDz30EHbbbTcUi0W8+uqruPXWW3HffffFylWYTJ8+HT/60Y/wb//2b/j85z+PxYsX48orr8RWW22Fv/3tb9G4KVOmYMaMGbjiiiuwZMmSqOSO7EahujyXXnopHnroIeyyyy748pe/jMmTJ+PDDz/Es88+i/vvv98aAsrKlVdeid133x3bbbcdvvzlL2OLLbbAokWLMHfuXLz33nt4/vnnKz63ja222gq77747Tj31VHR3d+OKK67AqFGjcPbZZ9d0TgcffDBuuOEGDBs2DJMnT8bcuXNx//33RyFfyQ477IBCoYDvfe97WLZsGTo6OrDvvvtizJgx+NKXvhR1zzjggAPw/PPP47777sscWuvs7MTs2bNx/PHHY8cdd8QxxxyD0aNHY/78+fj973+P3XbbDf/7v//rPH7gwIE48MADcf/99+PCCy/MdM2s/OpXv8JVV12Fww8/HFtuuSVWrFiBn/3sZ+js7IxE36BBgzB58mTccsst+NjHPoaRI0di2223xbbbbovLLrsMBx10ELq6unDyySdHJXeGDRtmrW2Zha222gr//d//je985zvYY489cMQRR6CjowNPP/00Nt54Y1xyySXYddddMWLECJx44on42te+Bs/zcMMNN1S0FELyj3/8AzfccAMARAL9oosuAhC6qscff3w0dvLkyfjc5z6HCRMm4O2338bs2bMxcuTIWDj40ksvxYsvvohddtkFbW1tuPPOO/GnP/0JF110keZSXnnllbjzzjtxyCGHYMKECViwYAF++ctfYv78+bjhhhuciSuSFStWYNq0afjoo4/wzW9+U6u1CIT/+HR1dQEIf57f+c53MHPmTHzuc5/DtGnT8Oijj+LXv/41vvvd72pJTcuWLYv+gX3ssccAAP/7v/+L4cOHY/jw4TjttNMAhH+HL7roIhx55JHYfPPN8eGHH+Kmm27Ciy++iIsvvji2LOP++++HEAKf/exnE++LtCANyNgmJOKQQw4RAwcOFKtWrXKOOemkk0R7e3tU3iIIAjF+/HgBQFx00UXWY9atWye+973viU984hOio6NDjBgxQkyZMkXMmjVLLFu2LBqHhC4Ov/jFL8TWW28tOjo6xDbbbCOuu+66WHkRIYRYtWqVmDlzphg5cqQYOnSoOOyww8Rrr70mAIhLL71UG7to0SIxc+ZMMX78eNHe3i7GjRsn9ttvP3Httddmer2EcJdQefPNN8UJJ5wgxo0bJ9rb28Umm2wiDj74YPGb3/wmGiNLtpglWuR9ffDBB9r2E088UQwZMiR6LkvuXHbZZeKHP/yhGD9+vOjo6BB77LGHeP7552NzrWZOQgjx0UcfiS984Qtiww03FEOHDhXTpk0Tr776aqxcjhBC/OxnPxNbbLGFKBQKWvmdYrEozjnnHLHhhhuKwYMHi2nTpok33njDWXLHVb7moYceEtOmTRPDhg0TAwcOFFtuuaU46aSTxDPPPGMdr3L77bcLz/PE/Pnzte15O8KYJXeeffZZceyxx4oJEyaIjo4OMWbMGHHwwQfH5vT444+LKVOmiAEDBsTeO/fff7/YbbfdxKBBg0RnZ6c45JBDxMsvv6wd73p/qPtMfvnLX4pPfepT0e/fXnvtpXU2eeyxx8TUqVPFoEGDxMYbbyzOPvvsqKyWWjopa8kd+XrZvtSyUUKE5XXGjx8vBgwYIDbeeGNxyimniEWLFsXOec8994idd95ZbLDBBmLw4MFi6tSp4tZbb42N+9Of/iQOOOCA6H0+fPhwceCBB2pdZ5KQv1euL/O9LoQQ1157rfj4xz8uBgwYILbccktx+eWXayWN0s6rvqbPPPOMOOSQQ8Qmm2wiBgwYIIYOHSp23313670KIcTRRx9t7XBEWh9PiCr+tSOEWHnuuefwqU99Cr/+9a9x3HHHNXo6NeOdd97B5ptvjssuu0zrwEOSKRaLmDx5Mo466ih85zvfafR0CKmYhQsXYvPNN8fNN99Mp7EfwjWNhFSJrS7aFVdcAd/3tUX+pP9SKBRw4YUX4sorr9RKrhDS17jiiiuw3XbbUTD2U7imkZAq+f73v4958+Zhn332QVtbG+69917ce++9+MpXvhIr70P6L0cffXQsaYuQvsall17a6CmQBkLRSEiV7LrrrpgzZw6+853vYOXKlZgwYQIuuOCCWCkgQgghpC/T0DWNV155JS677DIsXLgQn/zkJ/HTn/4UO++8c6OmQwghhBBCHDRsTeMtt9yCs846C+effz6effZZfPKTn8S0adMqbqVGCCGEEELqR8Ocxl122QWf/vSno/pmQRBg/PjxOP300/Gtb32rEVMihBBCCCEOGrKmcd26dZg3bx7OPffcaJvv+9h///0xd+7c1OODIMA///lPbLDBBmyYTgghhBBSBUIIrFixAhtvvDF83x2Eboho/Ne//oVisYixY8dq28eOHYtXX301Nr67uztqiQUA77//PiZPnlz3eRJCCCGE9BfeffddbLrpps79fSJ7+pJLLsGsWbNi29999110dnY2YEaEEEIIIa3B8uXLMX78eGywwQaJ4xoiGjfccEMUCgUsWrRI275o0aJYj0sgbBB/1llnRc/lzXV2dlI0EkIIIYTUgLQlfw3Jnh4wYACmTJmCBx54INoWBAEeeOCBqCm7SkdHRyQQKRQJIYQQQnqfhoWnzzrrLJx44onYaaedsPPOO+OKK67AqlWr8IUvfKFRUyKEEEIIIQ4aJhqPPvpofPDBB/j2t7+NhQsXYocddsAf//jHWHIMIYQQQghpPA3tCFMpy5cvx7Bhw7Bs2TKGqgkhhBBCqiCrrmpYRxhCCCGEENJ3oGgkhBBCCCGpUDQSQgghhJBUKBoJIYQQQkgqFI2EEEIIISQVikZCCCGEEJIKRSMhhBBCCEmFopEQQgghhKRC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkIIIYSQVCgaCSGEEEJIKhSNhBBCCCEkFYpGQgghhBCSCkUjIYQQQghJhaKREEIIIYSkQtFICCGEEEJSoWgkhBBCCCGpUDQSQgghhJBUKBoJIYQQQkgqFI2EEEIIISQVikZCCCGEEJIKRSMhhBBCCEmFopEQQgghhKRC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkIIIYSQVCgaCSGEEEJIKhSNhBBCCCEkFYpGQgghhBCSCkUjIYQQQghJhaKREEIIIYSkQtFICCGEEEJSoWgkhBBCCCGpUDQSQgghhJBUKBoJIYQQQkgqFI2EEEIIISQVikZCCCGEEJIKRSMhhBBCCEmFopEQQgghhKRC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkIIIYSQVCgaCSGEEEJIKhSNhBBCCCEkFYpGQgghhBCSCkUjIYQQQghJhaKREEIIIYSkQtFICCGEEEJSoWgkhBBCCCGpUDQSQgghhJBUKBoJIYQQQkgqFI2EEEIIISQVikZCCCGEEJIKRSMhhBBCCEmFopEQQgghhKRC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkIIIYSQVHKLxj//+c845JBDsPHGG8PzPNx5553afiEEvv3tb2OjjTbCoEGDsP/+++P111/Xxnz44Yc47rjj0NnZieHDh+Pkk0/GypUrq7oRQgghhBBSP3KLxlWrVuGTn/wkrrzySuv+73//+/jJT36Cq6++Gk8++SSGDBmCadOmYe3atdGY4447Di+99BLmzJmDe+65B3/+85/xla98pfK7IIQQQgghdcUTQoiKD/Y83HHHHTjssMMAhC7jxhtvjP/8z//EN77xDQDAsmXLMHbsWFx//fU45phj8Morr2Dy5Ml4+umnsdNOOwEA/vjHP+Izn/kM3nvvPWy88cap112+fDmGDRuGZcuWobOzs9LpE0IIIYT0e7LqqpquaXz77bexcOFC7L///tG2YcOGYZdddsHcuXMBAHPnzsXw4cMjwQgA+++/P3zfx5NPPmk9b3d3N5YvX659EUIIIYSQ3qOmonHhwoUAgLFjx2rbx44dG+1buHAhxowZo+1va2vDyJEjozEml1xyCYYNGxZ9jR8/vpbTJoQQQgghKfSJ7Olzzz0Xy5Yti77efffdRk+JEEIIIaRfUVPROG7cOADAokWLtO2LFi2K9o0bNw6LFy/W9vf09ODDDz+Mxph0dHSgs7NT+yKEEEIIIb1HTUXj5ptvjnHjxuGBBx6Iti1fvhxPPvkkurq6AABdXV1YunQp5s2bF4158MEHEQQBdtlll1pOhxBCCCGE1Ii2vAesXLkSb7zxRvT87bffxnPPPYeRI0diwoQJ+PrXv46LLroIW2+9NTbffHP8z//8DzbeeOMow3rSpEn4t3/7N3z5y1/G1VdfjfXr1+O0007DMccckylzmhBCCCGE9D65ReMzzzyDffbZJ3p+1llnAQBOPPFEXH/99Tj77LOxatUqfOUrX8HSpUux++67449//CMGDhwYHXPjjTfitNNOw3777Qff9zFjxgz85Cc/qcHtEEIIIYSQelBVncZGwTqNhBBCCCG1oSF1GgkhhBBCSGtC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUqFoJIQQQgghqVA0EkIIIYSQVCgaCSGEEEJIKhSNhBBCCCEkFYpGQgghhBCSCkUjIYQQQghJhaKREEIIIYSkQtFICCGEEEJSoWgkhBBCCCGpUDQSQgghhJBUKBoJIYQQQkgqFI2EEEIIISQVikZCCCGEEJIKRSMhhBBCCEmFopEQQgghhKRC0UgIIYQQQlKhaCSEEEIIIalQNBJCCCGEkFQoGgkhhBBCSCoUjYQQQgghJBWKRkIIIYQQkgpFIyGEEEIISYWikRBCCCGEpELRSAghhBBCUmlr9AQIIYSQvsqOXbOjx57vVXweEQjt+bNzT634XITUCzqNhBBCCCEkFTqNhBBCSIX47WXvJavTaLqKAOAVKncpCektKBoJIYQQBzt2zdbEYC3Ened7VuGoMmW3q7XnDF+TZoDhaUIIIYQQkgqdRkIIIcRBoaOgPIn7LHmTX6Rj6CmnRTGwnld1F72CB1FMdicJqTcUjYQQQvo1aijYDD8nicJKsqWtoemCbxWOScg5y3MxXE16A4anCSGEEEJIKnQaCSGE9GuiDGgj/OxKgKm2HqN6rijk7BdiDqSHwHmcPLaauRCSF4pGQgghLY8rC9omusxtvVUOJxa6VsLWaRnXU3a7GiIQDFOTukLRSAghpOXx231dDJZcRbktyUnURKNfxaquIIi5jEkJLyIQZfezGETzKifTeNF5bPMmpNZQNBJCCGk5VGfRK3hWwZiFLC6jLWxsxfeBID1TuhpkW0M6jqQeMBGGEEIIIYSkQqeREEJIyxGFo40wNGAPRSeFoLMkwaihYteYMNxcUMbB6jzaj0sOUzNETXoDikZCCCEtgQxJx8LRDqxjMgpGV9jaXGdYC1zha3W7WfxbhqkBhqpJ7WB4mhBCCCGEpEKnkRBCSEtgC0nbSutELqHiKtY6e9qTw5TwsxlGluFqURRaTUYTLctaCVNr53Gdn5AaQtFICCGkT6KGowFDGFq2p4WUzXPEjnGITBMtNC2PKYlHZw9pJbPaNUYTghlaD8p72bFrNkPUpCYwPE0IIYQQQlKh00gIIaRPItv/Re5gwY85jHlC0TH3MGP4OhOlMDQAZyhaoOxK2pzMWDHwktuYlBBT8XwJsUDRSAghpE8Ry5K2ldWxCEZTiDkFYwUld2znda4pLIWis4Sqs5ImHFn0m9QChqcJIYQQQkgqdBoJIYT0KUyX0dYu0Ct4MYcxi7OY5Eba9leCKArNbQRCV1Kr8ej7Whhb7leLh0fZ1JZMahNmU5NaQNFICCGkzzBlt6tjgjEm9LIKxpRs6CzFvJMww8RSuEXb1YzpDOsSnaIvQya1hEW/STUwPE0IIYQQQlKh00gIIaTPYHMZY3UYfT81g1obj2xh6LxZyGrIGdCzn1W30UMQCzt7BS/MpjYSZrIW8M7tVhKSATqNhBBCmp4pu12Nnfa8xikYIzIIRq9glOVR10QWvJiYVMdY8X1rpxiXELUVG8+SoW3OUxtbyP9xroaqCckCRSMhhBBCCEmF4WlCCCFNjyssrSa9aONgT4iJxjlaCzodxSw9p9UxSoILgFiSixamhpFJrYaiLSHqJMyEGvV8hFQLRSMhhJCmQxbwBlIEo0Jse0IGtbo9ti+DQHR1bImdI2N2tFnQW1t/6MiyrgXMpiZ5oGgkhBDSdJjtANV6jBoZk160c1fQEjBLyZ2szp6ZyGIrwZNFGLrcRya8kHrBNY2EEEKaih27Zpddw4R6jJIoWcWWPZ0g9iLBqApMS4Z13hqNtSgAHkO5p3rBxBiSBkUjIYQQQghJhaKREEJIU5EUMjYTYGLum6XLi1kyx1pCx1E2p2rU+VhK5riIzS+Id3xhggvpbbimkRBCSFMgk1+0+osJ2dJJCTGAO0NaI6HgtwuXqFXXEWrrDZWkGHO9YWz9oVLs2zxPVpGYtJ4xbb3jjl2zmRBDnNBpJIQQQgghqVA0EkIIaQo0l7HgZ3cZZWjZyKSW46Jzm2FpR5eYxPklhc7TWhHKuVvOkaVtoctRzUtSx5m8rRJJ/4LhaUIIIQ0lFpY2sqXNNYw2ASmxiUUAzvWKtegx7TrW1ntaltWJin6n9KOOMGo1yvPL5yIQodAuWkLgjj7ULqbsdjXmPXZKha8AaWXoNBJCCCGEkFToNBJCCGkoWjJLBS6jlhlt6/6SMdklzWFMCwfb3Dyr46e6hoYLaHUFM7YQJKTeUDQSQghpCElhaVuxbqeALGELRVciECteK5gmKm0haDOErbQO9BBYt6WJTCBBsGa8h532vAbP/Pk/UseT/gVFIyGEkIaQ2j/akfRiCkabqxg7b5UuYpZz2UrZqGIttnYRcXFnHpO4Te1nbaxrtM47RTjWu+MM6ftQNBJCCOk1pLsIINlhVDKh/XY/JhY9354IA2TIYnZQbeaw7XjTSdT2ldIKIkdRSYoBkOg2yvFAstuoHYt8dSg/vfe1ePrhr6SOJ/0HJsIQQgghhJBU6DQSQgjpNbJ2aTETXOSxrsQX9dy2fUlzyU0hwW8xQsNJHVhcSTBqOZ6k8eb5XSHqtC4w5vkIcUHRSAghpO5M2e1qAEa2c0JYWoak1WPUsLR6nszrF5PEXq0wr1EMnPOJ1jdCT4rRws7QQ9RyG4AoKcZW81GbhzKH2PrJlNfq0/v9HE8/8KXs909aGoanCSGEEEJIKnQaCSGE9Aqmy5g6xrY9wWWU2+7/8WcBAPufcVdN3UXP9zDnBwcDAA74xj3WMbEwsLy+I6PZPL+aOGNzBZPCzGp42xkSzxJ+Vl4zhquJCkUjIYSQuqCGpP32ci9pSVJY2hSGnu/Bay/EM68BtwBtL9Tt3mLtAeV2Q2RF4q2gZ0qbaCFns3ajEqI2j3Gdz3burLjWjBLC8DQhhBBCCEmFTiMhhJC64ezI4ijYbR2r1GSMnbPk4N3/o0Nix6mhZPWYP31vOgDgwHN+Hz2WZN1m3gsQz3auFGt4WWk9mGl72vkSxhLigqKREEJITZDhaMAeks7bHtBcw2jLvJbnTaLQbg+q+RaBlLbt3879g3VcYCnirWY2A9DK4ZgZz9EYuMPYMhxtrl0U8OH5AIL4PkmWNoKuLPSpn7kOT/zhC4nHkv6BJ4Toc13Qly9fjmHDhmHZsmXo7Oxs9HQIIYRAX8MIwNrtRd2fJBoTS+7I9YFKYkpvIoWjSWC4eaZI09y+YhA9F0WhPS6dLBSEpefRY8VVlMepx6jnsLmL1s4xGfpzUzS2Nll1FZ1GQgghFTNlt6v1dn+A211UWgNmdRfVc5jntbmCvYHtukEgtO0251EiHUdb0ks0RrqKZmi5UCjXcZSuo18SnaV9qusYnU/pdZ0FbU4+0x9ICN8JhBBCCCEkFTqNhBBC6kKWsGelJCWm1Js/fPcg63Y1bO37XixcbSO29jBH0kq9kD+3uXef1NB5kOYjl9N4ySWX4NOf/jQ22GADjBkzBocddhhee+01bczatWsxc+ZMjBo1CkOHDsWMGTOwaNEibcz8+fMxffp0DB48GGPGjME3v/lN9PT0VH83hBBC6s6U3a7GTnteg532vAZ+uw+vvQC/oy38PrANfrtf/upoC7d1tKEwsBCNl1/aOPmlHq+M99t9FEpfkoP/54849Pw/4dDz/9TAVyTE973oy/ZcC83LtZnqms+Cp4fq2wthqL60xtNvNx7L/erraLxm6pisX/B9hqSJlVzvikceeQQzZ87EE088gTlz5mD9+vU48MADsWrVqmjMmWeeibvvvhu33XYbHnnkEfzzn//EEUccEe0vFouYPn061q1bh8cffxy/+tWvcP311+Pb3/527e6KEEIIIYTUlKqypz/44AOMGTMGjzzyCPbcc08sW7YMo0ePxk033YQjjzwSAPDqq69i0qRJmDt3LqZOnYp7770XBx98MP75z39i7NixAICrr74a55xzDj744AMMGDAg9brMniaEkMahJr/YElTkdluii1lvUc2Utia/AJobJ127P17ymd663dx85r/vjYWm1eex7GYlk1ru17KpZVa0miltPk/InK6kfuTcu07IfQzpu/RK9vSyZcsAACNHjgQAzJs3D+vXr8f+++8fjdlmm20wYcKESDTOnTsX2223XSQYAWDatGk49dRT8dJLL+FTn/pUNVMihBBSY1z1FwFoWc9mxm1SAW81U1p9LsOypgg1Q73NjKvWYyQcjfWOtnaAWl1FmRVtqd0YrYFMypz2daGZBIt7kyQqFo1BEODrX/86dtttN2y77bYAgIULF2LAgAEYPny4Nnbs2LFYuHBhNEYVjHK/3Geju7sb3d3d0fPly5dXOm1CCCEV0tt9iOX1Gpn00myoiTJZCnYnHW/bR0gSFYvGmTNn4sUXX8Rf/vKXWs7HyiWXXIJZs2bV/TqEEELKyDC0r3ZUUULFQDwMLUmswwjYtxth6L7gKtrwfT+KwgcJLf60PX5BEYMAikHpscVxlD+OoFzHUesCUygAUGszlsfLcxJSCRWlR5122mm455578NBDD2HTTTeNto8bNw7r1q3D0qVLtfGLFi3CuHHjojFmNrV8LseYnHvuuVi2bFn09e6771YybUIIIYQQUiG5RKMQAqeddhruuOMOPPjgg9h88821/VOmTEF7ezseeOCBaNtrr72G+fPno6urCwDQ1dWFF154AYsXL47GzJkzB52dnZg8ebL1uh0dHejs7NS+CCGEtD6umoitSLOEh/9yy3GNngJpUnKFp2fOnImbbroJd911FzbYYINoDeKwYcMwaNAgDBs2DCeffDLOOussjBw5Ep2dnTj99NPR1dWFqVOnAgAOPPBATJ48Gccffzy+//3vY+HChTjvvPMwc+ZMdHR01P4OCSGE5EILSyuZ0UC8LWBsG+DuGZ3SHlANS4dfZV/j8Ivuxx3nlZMsmxm/9DoERaHdgwxIy5aDUXKMkhgjw9ECvjVMra1JVMLVnl/OsAYQjZWoYWtCKiWXaJw9ezYAYO+999a2X3fddTjppJMAAJdffjl838eMGTPQ3d2NadOm4aqrrorGFgoF3HPPPTj11FPR1dWFIUOG4MQTT8SFF15Y3Z0QQgghhJC6kUs0ZinpOHDgQFx55ZW48sornWMmTpyIP/zhD879hBBCiEpfcRkJaWXYe5oQQoiGGpbWingD9oLdgJY97cqUlm3wACSGpH312D6InHs8aSDc4vvpWdVR1rRfAGTo2g+LgMvX2cyY1uo0Gq+fWWankoLfhLC5JCGE1JEdu2Y3egqZkT2lm4nDL7ofMy5+IH1gk3D4Rfc3egpVs+cJt2DPE25p9DRIE0KnkRBC6khfcsyieoyKC2hzE221GWOuZEIdRgCJDqNao7Gv1Wq847z9I5Freom+5Zl0HdWOMWaCjM11BCzJL75sIWi4jEZtx/DY5Nf14V98LsPdkv4GRSMhhNSZHbtm49m5pzZ6GlZ27JodDycTQogFhqcJIYQQQkgqdBoJIaTONLOD52rjlxiCtiTCyJA0YKnPaCS9AEgMS/u+F9U6/H//uXfvvyhV8tv/2g8zLn4gHlpXQtAFrQd0hgQZM1QNRK0HZT1HmRSjJsoA5fefWavRlQzz8M9m5Lxj0l+gaCSEkDpgJpRM2e1qAOX1Z40OV8v5NIK+tk5R5dgfPoygKHDL2fs0eipVowlQQjLA8DQhhBBCCEmFTiMhhNSBKEtYDQ0C5UzkBqMlvhRKYWVHaDopg7qS9oDhadxh6WYOSWedm81Nle0Do+el72qo2i8USu0Hy1nV6rEyq1pu0zKrgXJ2dVGv1WgLWwOIjSEkCYpGQgipMZ/e7+epY2z1EF2hQvPDvNLQtgxJ24Sra92lJhhrhN6PufU4+vsPWberZXWaEa2vNSEWKBoJIaTG+O0+RMzlST/Oay89KNqTIar9QLe5i0AGh9GV4GJzHUvnztLtxXQYfd/HjWfuWdU9NgtZnEZtn/JYOo/SdQzPl1zPUZ4/5jzCeP8pDqTt/dQsTjhpTigaCSGkhuzyb7+s/iQF3ykcgbhLmZbM4BICzZzV3awcd/mfo8dJrQB7i2rcS5ezuN/pdwLQ31cPXnV4RdcgrUVrxwgIIYQQQkhNoNNICCE1xG/3S23bqkwwKLX005IWlN3qOdPC2gBi4Wig7EBqzzO0CqykTWBbeyFKegEQC0vLbc2OHh7WfRfpPPoWZzdMbnHfX8wxLD13Jcmo15TH2sLVgFFap1TbUSJrPBKSBTqNhBBSI7o++38A4uFgz/eir7zkCi0XLH/SC759e50x1zJmGd/sHP/jRwFUNlebkDTP4zpvLZYRJK5VdLxH1OvKkDXp39BpJISQGuEVPKBQKDmNxs6SC6V9eKeJKblmruQk2tYuxlzMktPpnJ98rAgCV7KLs5SO6TKWXER5flfyS6zsTsll9H1PcyH7Ara1hC7nMdpvCLdc7qPFeQzPmVyiRz5Wz+Eq6i0sPpKHAPf/+LPOOZL+BUUjIYRUye5H36iHkW0fypWUmZHHGILTrLOXJfxd66zYWMZ0ytgkwajyxasfD/eXxl77pak1nXelnPDTv8Re65goM/B9PzFZxi94UXa0es7AuIZ5flf2s+t61nNY3qMsuUPSYHiaEEIIIYSkQqeREEKq5C+3HKc93+3IXyc6cC43R7p3olgOIYpARCHv8jjddfQAIAiiMc5C3cq5NRyh6STUDiP6qeLbRCAQKPts6/uynKcZsLlx5lx1p9D+OiYlzZjnUZOH1HMHQKmeY8nxLArlekZo3PfQ06OHr5Pc5+geG7AeljQvfDcQQkid8Aqe9pU4VlkTaH43H5vXAKBlObvmkXSexHM3kK/8/IlGTwEnXflYrvFZBG8YmvcTk4TSziPXgmY9v3o+VYiqmBn1hKhQNBJCCCGEkFQYniaEkBrz2G/+Hbsf+/9i22VGdZKHYya7+B1+LItaEku2KRQAP3sig7U0kBGa1hxQI3PaHBOrwWjLnI4yrMtJMJ6v1mxsPofLloiSljCSdB9pWddqaNmWLKOex/e9aLSaWa0eIxNkXHMyE3qiZQxN+LMgjYWikRBC6oQqylzZ1Ukh5XJBZktQKAi0D3dhfODnmVtVZFjzpmZNx+Zh2d4MwjFvSDoP6v3ZMq/NLGiXcIwV9Vb3pRxjPjafq++jA75xD+b84OA8t0haFIpGQgipA367LqbMLiyma2hFGaMKQZkcE16o9CFfEhlZu9GYYs22NjJWVsfSBUZ1GVVxqHaAMbu/2BzG8PTNVWZHklT2xkXW0jVu969gXLOcOJMoBlVRqI+InUut5Wh9nukOSH+CopEQQupAkpOXJ+ynOoi2fZEjFFZ3jrmb5rVEkC3smDRGbRuoUg5Px91HV11G89hmoBYuY97Qrk1k6oW6/VjGtSwO7qoTqdZzVMWmGq5OqwkpOfCc32v/uNB57J8wEYYQQgghhKRCp5EQQuqA1WlS6iFmPg/iCS+eH2guY7Sm0VLPEUaHEOe1bbUa5X2Y+0ouoxqabmsrl3eRyS/hNi/WLjC8XPOHpVWSXLhqzgmUaiYmOJN+NN4esk5DjrKHq+3nsIWum6EEE2ksFI2EEFIPHPX38tTBM0PJamKMZ/mw18LV6jwSWtmpc7VlU9vWOOqH6kkuara0+3J6vcBmCU3LFoYuKhGO2Wo22sdESSlKopOeyFIKM5dCz67EGPncXpjcSLpJOYdEhqsZpu5fUDQSQkgdsAowY3vWZAqzBIrqKqpuonUcEHMgXXNV52grr6OuZfR8D4V2XyuvUygl/6jJL23thchhVN1FfZyPq7+4c+Jr0SzUSuBm6Yqjosr+PI4hoLuGpuuod5GBttbRLMVjK81D+hcUjYQQUmP2OeV2ALoodDqMCSVrbG6iiUyC8RDEnEazFE8SMWGYMtbTQst+LNRsCkQVvZ5jcyyt/9K1c6PHaqJJLckrFM2EF0APZYtAdRftriNgL7Mj3xtmNrYtSSZPwgxpbZrjt5UQQgghhDQ1dBoJIaQOmOHoyL0rOYuZSrL4BcUpBFB0O48C9nWOeVDD0upz7R4KvlGX0dcSX4BykotMfim0xZ3I8LHf1F1HkrqxZDk2dUyGew9KbiAQL7ETuYUWtzHxfBa3MdpfFDA7yLjqOf7xks+kzp+0FhSNhBDiYL/T74Qoiki4ZVkXCGQXjHnXhIlScMglDlP3O+afmCmthqtLaxnNELSnCUF7tnS0TwlJR5nUDVobd8ovn0IQBImh1qzCMes95F0TqQk3JfQst9mEY7gvsIpN87uZHFO+hlIXkuFpUoKikRBCqsQUjNb1iwXfKhZtIkL9QFZ7UUdr2eADxaD83OwCo6w8SnIfYy5fSuILgFjyiyoi26JEmLJgVHtKq8cAZaF15fE7OefYGyS14wOqE7VZs8iT0MSeZS6x5BZLMfA04QiUE6fShOMfvntQpnmT1oOikRBCFA74xj3hh2dCKFjFlQ1tuovmeLPsTBKyRp6W4GK4imq9RlVoRqV/gsAqEs25aaK31ApQT3rRs6VVwRjVacwhGBtVbueUXz5l3V4LFy3tnipxG63ZzIYYTHMdk4QjYJT2cQhH0r9hIgwhhBBCCEmFTiMhhJgUw/I1WdczAo51iorLaDp26ncTZ3FmI1Qd1mvMlgAjLB6Bax2mreOLnIfNZYwSYuQ5ElzGZglJl105e4kZSVbXsVJ3Ma3kkC087FrnaHMb5TXS3EZ5Ppfb+LtZB2Z6HUhrQ9FICCEl9j/r7pqcxwwDm8kg6ndzOwB7KFINI5rtAwEtNK2GsTPP0ZLwomZJyznYBKNZwBsIBYfaWlAKxkaEOE+/cZ4m/szEFptwLO+r13rGbIE+LcTseE8kCUc5Pkv3GFtyTDUZ5KT1oGgkhBCVClxGic1lTEt+sQmLpMLMgL7GMVrfWEqMUdc0qnO3iUTtueIuyv0xJ1HJlFbXMZprGOVcbYLxp8dNyfRa1hrtdSwJIXtbvfwuo+1a9u0JhdyNY5La/ZmlcJKEoxyfJhzN86nH02UkEopGQghByWW0JL/kab/nelxJ8ou53yZgYsIR2brI2LrSpIlFeZzvlxxESx1G05FUxWKzJ1GYPZjDbdmSYipxFLN03ZGUxV9yn2ibcJTHu4SjeR9J5XgIYSIMIYQQQghJhU4jIYQAUVgaQBSazhqWzkJa8ku4r7x+zXa8qxcwoJRLKfiaY+p0tIwkHSA5JC2vW05wibuM5Xv0cfUXd058PZoFPYxrdxsrIU8oOg1zjkA8QcblNqrHu9ZsJrmpzdyxh/Q+FI2EkH7NAd+4B2J9UROJmmC0CDiUPrhFUcTWBgJILeQdT4Lxnc+TEjRsGdWAPVNaxTW3pPWL0ZiSYCy0+cpzryQgC+G4BnV4kZx5y18BWBJG1LV7SnjWJsrCcfnaMqYlt5gCLMvrFBhrUm3iMUk4hmPM5Jj42kY5zvZaHX7R/RCBwJ3fPiDjK0FaFYpGQki/Zs4PDsb+Z9xl35lTNJjY1jLWEltGdWwOjmsnCUbbdQBoDmP5uYeff6UrGjvzhmcaXk6nVticx6SxNlyvf+a2g8baQ64zJI2EopEQ0u8RgUCwPoi5i6rjqJWkcZ0nGlveZrqLpmuoJcc4ypu4xptj1MQYiau/tT1rO+4w6hnRRqa0JcGlEQkv37z9bwCAoGgPLbtaBKq9mU0nr3yO/Ev/094neZ1YdZ7q+dU6k9FYw21UtwHxhCrbONfyh8MunBM9p+vYP2EiDCGEEEIISYVOIyGk32ML65qJMFq9Q+ns+L42JnKYigHgK3Yj3G6XNiYl8cZVhidvPUGbO5jHIZTuoxqWljSqDqNK2uuctL/a8G8lLmNakpN6rOs9kqU8kOd78KEX+84DQ+OEopEQ0q/Z55TbQ+EXBLFkGBOh1L7zCh4QFKMaiWYYWB4vP5bNBAM109iFrYVceZ9D9CSEPvU6iuqaxnItxijBxciSBkLR0KZ0g2k2/FJGeFC0Jw9pY1WhZlk3KMkikpKEoisUnRTWz1KjU17X1gqxGtFsjlFD/PKaALRQdVAULADeT2B4mhBCHIJRFEX0lQsle1olj2B0HZt3n9xvy9wOBWG89I55rOcbLQJ9D9d+aWrmudeby47YHpcdsb1zv1ss6+tJbaS1YqyFYEwjyzxd108an5T0lIdGZ8uT3oNOIyGkX7LvV+9AsD7QBGNSqR21jI3ne9ZyO2ayjKx7CJjCJTxX0odtWAolXpMvfC60D3fzuYlNrPrGXM3El7a2Qqw1oOwl3ey1+/yCn+g2usLBrvBvnvvNKxTTRJqthaR6jcjJjt6fQbyndKF8rK1mo3a+hPaC6pzMxCHpPDJBprWh00gIIYQQQlKhaCSE9EsevOrw6HGmDjBV1mwEKg8zVnO9LCFx02WMFxsvn+fqL+6M2Sd9us4zbxzV/Fxyl9LJ4GBWUtIoX1JTdTKg2V1nUlsYniaE9FtET1EXjLI+o7G2MUp+QRCFqaMQtZIkIvF8T2vJB5TD0qqwcH3gCiUEKcPUtlp86nMbrmSXpE4vah3GctJLGJLurbVrs/74CoAwDDrrM5MBAP9zz0vhNiHw3UO2BQCce9cL0TgA8D3Ald9he81cGcu1uM9Kw9FmGNi2zXYONUwtk2K0YxJC1Fp3GePebckwrlA1ANZybHEoGgkh/ZZHrjsKe55wSzl7Wi2xE+iPTYFn2wZA6+mcRLUOTWJplpg7lc9NSiqp0xuc/2+TanYuUxwC9mzkLBnFea5Zq+21mlOl58xaDkjiKpJOWgOKRkJIvyZKhik5jgDiyTBqhjECoKDXYPQUB0/ichk9ZZt1PkaSQbk/cLyunltslOdruovq3MxOL4U2X+sl3UxErpjn4b/vfjG2Dyi5YiW3USbDqMfGzpXgoKnbs86vFtvzjIslqJScbzUpRhur9JoOgMhtVK5WGhsYTnf2BCy1NM/hF92PO87bP9N9kr4B1zQSQgghhJBUKBoJISQnues2NhHSGbrl7H3w//5z72i7GS5vpjqMzU61bmKtrptckzG+rxZLJEj/guFpQkj/RglNq2FprT2gmgCTkiQhk2Aktg9WM6PZlaARJSwoIeo0bIk2Zna0SvuANiURxiuFqfXwe6OZ9cdX9NcxCBNibOFlM0QNlDvERIen1CCUVFToOuGYpPdCFtLCw1EIGog6xZT26Pes1GJUWwOWz6W+z9xVA9LqgwLAjIsfAAD89r/2y3SPpLmh00gIIf2MJPFZbQkW0hzkcRHTOtu4oNPY/6DTSAjpt+x+7P/TEmBstRjTnEUAWukdEcQ7xZik9Qd2uY1JmEk46mNbSZ2Trnws7PzS7mudXsJuMD7OvOWvuPzoT6Xee29Q8D0UtRIxXmSAmY6j6jaG+3XHEbB31nElw1RD7uQYR+a9bd7m81hCivKeDBNj3CWbomPkfn1WlhFukjLUSd+H/1ISQgghhJBU6DQSQkiLktU16wtJL9JtzEIl9Q3rUROx2XH12q41t31r37pfg/QOFI2EkP5LKRwdJQPI9XxBUA4x++UEmKj7ixIqDot8K48LYbg6HsgLIAOFnqXgdBJJ683MULT23ajD6Plql5d4u8Bm4fsPvR69PrI2YyAECpaagHIfEA/XusLUQHJyjHmNLOTp9KJtz1AMPsu8ze8q5XeefJaMOkKdne8XomuWtyFWPzSccznphrQOzfkXgxBCCCENgQkuxAWdRkIIKRE5iKWOL6IotG4vXsHTusPI7YCSAFMsl+dJchvlsUlOVpYPb63Li+Isym1Rn2mlpI7v+yiUHEcAOOP/PYsfH7tj6rV6C9/zAN9w/0pldtSkmAjlhZaJMbGyOurwDK5jNJcqBFRi+Z2M7SZdx5nJManIsk0JjqM1RG/ZVlDK9ITHFRKSurJNj/QN+OMkhBBCCCGpUDQSQgghpC7ceOaejZ4CqSEMTxNC+jVewdPqLAIod8ho97VxacguMrKDjFfQExRCSiHqQjnEZ0t0ydI9RE14MUPS8rHZ6UV93tZWOqbCUGk9+NGf3wRQDlEDSpjaUkgwHob2tDHWBBcllJoWqq4lSa9zlkuqEeCK51wKUxf8QqlrjCORRU3WsmVZG2FrM2RNWhOKRkJIv+UvtxyH3Y++sdHT6BXUsjqn3zivqdYwqpy155b4wcNvNHoapAbccMYejZ4CqTEUjYSQfk2w3l2CRHUC1aQYdX+wPoBXEAAK4ZjAg9/uw0MQGWPC1/tRB0ERfqC4g8Z105xHV0kdACi0lc9WLq+jX6GtrXmcRRvlcjm6awgkl+Axx9iOlecvj1P2i2Q3UCaf5KVWTq7v6W6jen41McZ0t10uZNm4zdf1xUXlR5K+QnP/5SCEEEIIIU2BJ4Toc4sQli9fjmHDhmHZsmXo7Oxs9HQIIX2cXY+4QXserU1Uyu2oz82C31Hhb9+Pbyu5THJbueyN4jQqLqS6HlGStpbRVlpHjpM9pWef9OkqX6XeRa5tBEJHUBbwVot+y21mpxh1TLRN2MeYj8OxyXNLcxyzOou1Wjqpzledm+sezdfHXK8otLH287m2/fKUXfNMnTQJWXUVnUZCCCGEEJIKRSMhhBBCCEmFiTCEkH7P47cfr4WozbC0Rt4WF8UgClFXixayTghNt7WFHW280rZmT3yxcdaeW5bL75TK7ajdXgBYk11i3WIklq4xQLwkj5kcUz6m/LjaxJasYem0Mjrl10HZWLAntVi7vRjXicLV2ukK5RJUURmj+Hl//pWuxLmS1qDv/SUhhBCSmzNv+Wujp0AI6ePQaSSEEDhcRbnPUtg7S7HvWpLHZZT3IkvutLX5fdZtBPSC36pLCBjldYDIClEdx1iBb9VKcxQKV7eF106fr6Vtc2YqKShud1SVScQc0WxFcWKupFHcW3Ufr/7izlmnS1qAvvdXhBBCasxuR/660VNwUsvuJOfe9ULNzkX6PvXqfENaF4pGQgghhBCSCsPThJB+T6ZQs1KbMTquBk6NrUZj/NL2DjBqaLqtzY9qMra1l/tQy9B0W5uvh3H7EAU1zKyEqO1JLPHkGBfqeDM5RmJz45wJJTlf3ixOX1VuoDnPKFxtD1ObXWRc9xmey8OVx+9U+dxIn4SikRBCqqAeaxvrFTbsa+HInz7+drJwIb1Gqogk/QKKRkIIyVBGx1aGJ7E0j6RQdijNbjC+5Xi1m4v2vaB0kElxGeUxqsvYVvAx6zOT01+LJkOKFa3PdLlpcvjU2lPanhyjjotO53AczTHqnGpNJtcxxSl2zV0ZEH53lOWR80hzG3963JTUuZLWhGsaCSEkhWrdxFqEsfsbV859J/NYV5vF/ka9lx/If3hI/4VOIyGk3+MShabYc65nLPWcltvVvtNpgjHNZTTXMcpjTJexoJTXiTmNfdBlnNm1WfT4p4+/HT2WpXSS3MHALLeTUATcOVaeS9jdSW1MBWHbWjiLqcc4bCEfijvb5lt6bduLgl9+9Kdyz4e0FnQaCSH9mj3+/Wbr9sS6jYZgzIIams46vhZjWo1Cje+5Fq9h3nPUSjDmfU9lpdqON6R14TuDEEIIIYSkwvA0IaRf47cn/+8ccxwVZ9FMhDHD0l5BCTNrYegwCUYel5b8ooal5X6Z8GKGptvaC1HpFxma7uuO5Om7bo6fPv62NSnGDCm7+kqb4Wx5DluY2nVu9Romlb7GaY5ipc60de6ut7otvK64jT/83PaZ5kBaHzqNhBDiIE8CS5ZkmTzCwjfO5ymhSHNf2rlrHdJtBC5xVStB3Ahh3Sx1M5ngQrJCp5EQ0q955LqjsPeXf5s4xpUAEyu5oyS+yBI7gP6hrLqMlZTXUc9XaCsoyTBe5DLKPtN9MQEmCd/zYlZHrMe0o1i3VkrGcByLjhIzZnKNNo8aU8s1rDbXNNyhnizlWqXzfO9wuoykDJ1GQghx4BW87OV2CvGwtYmfMWmmPN59bde5WtUxqmdikOrEus5Rz9e1EUlPzeJykr4FRSMhhBBCCEkll2icPXs2tt9+e3R2dqKzsxNdXV249957o/1r167FzJkzMWrUKAwdOhQzZszAokWLtHPMnz8f06dPx+DBgzFmzBh885vfRE9PT23uhhBCKuDhn83Awz+bAb/d1768UmjY873YPr/dh9deKH+VxsiwdBQybisnrPgFTwtNx75K+9Xe0mpoWo5raytdzxKa9n0PbYW+WZsxiVN3mRjev1f6KjlvBd+LvgAlxF8ap20zStSobpvpNtrW+Vl/ZnnWqWY8Pus1zHtPO952/9qXcQxD08Qkl2jcdNNNcemll2LevHl45plnsO++++Kzn/0sXnrpJQDAmWeeibvvvhu33XYbHnnkEfzzn//EEUccER1fLBYxffp0rFu3Do8//jh+9atf4frrr8e3v/3t2t4VIYTUABmetrYLlO0BlTWMgB5GVNcxRuc0RECa6DAFo0tkZDlXq5FXsFm3O4Rjnmukibws4jKrCHUJRds28/xJzwGGrEk6nhCW2gE5GDlyJC677DIceeSRGD16NG666SYceeSRAIBXX30VkyZNwty5czF16lTce++9OPjgg/HPf/4TY8eOBQBcffXVOOecc/DBBx9gwIABma65fPlyDBs2DMuWLUNnZ2c10yeEECv7n3FX+YlR7NhMhnEmtMhkFkV0ms6Put/V9aUsKMpC1ZUAo5bYOf/fJtXo1WgOZj/5DwDlpBRZ+kZNUpFJLeo22zjXGPUcJpV0fkkiiyCtRea77X5s9yK3fefgT1R9TdK3yKqrKl7TWCwWcfPNN2PVqlXo6urCvHnzsH79euy///7RmG222QYTJkzA3LlzAQBz587FdtttFwlGAJg2bRqWL18euZU2uru7sXz5cu2LEELqTsHPLBhNXIIxNq6gC0zzGtZzW4SqPu3Qdbp4zmuJ5+lLXPP0/Fzjk8K+aaS5dtWSx1GsBVkd1P7mVJP85C6588ILL6Crqwtr167F0KFDcccdd2Dy5Ml47rnnMGDAAAwfPlwbP3bsWCxcuBAAsHDhQk0wyv1yn4tLLrkEs2bNyjtVQgipmPt//FkAwAHfuEfLhraHn/VyOgCshbttzqI6JnaM4TKafarLa9NQXu+njPmvAz5e5avQXPi+p5XP8T0vVlpHLaETHVca5zqfa4x5LlNUpTmPWUVYmjisNGys3o96DbXEkEqrOdOk9uR2Gj/+8Y/jueeew5NPPolTTz0VJ554Il5++eV6zC3i3HPPxbJly6Kvd999t67XI4QQiU0wxpML/JhgdCYjGKFo11ozP9HFVOZU8GPbWpGc1YpKx9S3fI4rsaVWjqaazFPR/BzHt0Kxd9IYcjuNAwYMwFZbbQUAmDJlCp5++mn8+Mc/xtFHH41169Zh6dKlmtu4aNEijBs3DgAwbtw4PPXUU9r5ZHa1HGOjo6MDHR0deadKCCFV41qvGD4uh6CTnEU5Rh5jOouxa8UKg/vROkZ1bOgu6i5jwa9OaDQz4cttdxvD/XqbwaJjnDo2i9soca11zEqaQEwir9B1FSOX9yfnct6B2+Q6L+nfVF2nMQgCdHd3Y8qUKWhvb8cDDzwQ7Xvttdcwf/58dHV1AQC6urrwwgsvYPHixdGYOXPmoLOzE5Mnt05pCEJI62AvXVJ2Fk3BaHMWy2V07H2kY+MNwWibj7nN/O77Hn7w8Bs1fz2agdj9WsrrWMc7nDdN3CeIN1fmcpbxrmPS3MSsrqXruNh7pUr3kvRvcjmN5557Lg466CBMmDABK1aswE033YSHH34Y9913H4YNG4aTTz4ZZ511FkaOHInOzk6cfvrp6OrqwtSpUwEABx54ICZPnozjjz8e3//+97Fw4UKcd955mDlzJp1EQgghhJAmJpdoXLx4MU444QQsWLAAw4YNw/bbb4/77rsPBxxwAADg8ssvh+/7mDFjBrq7uzFt2jRcddVV0fGFQgH33HMPTj31VHR1dWHIkCE48cQTceGFF9b2rgghpEa4yucAcbdQG1/QXcKkZBf79fTrmGscw3I8vjZehqaTMqv7KuWkFyAIksPLapja1lfaHGfbL7El0ADVrQusVSg6a2KOOi4IRMslSJHeo+o6jY2AdRoJIb3Boef/KXpsZkUD+TKj1WPjY13CUV/LaIa/ozqNJfHYXqrT2KYkx5y155ZVvw6N5vrn3ivXX4xqLqL0Xam16KjfmFS70XUOE5d4zEKWcHCaUKxmTaPJt/b7WK5zkdYnq67KnQhDCCH9BZeraP1uEYs2gamPdez39W4zcr+ZNR3L2PX0dWytIBgl0jV0OY6A4j46HEf5urgSaMzHKvVYB5gkBKt1iW0uJMUiqRaKRkIIsXD4Rfc7XUXte8aai/pYl8MYL/BtC1/bEjcKinBsNWLiz5IJDcBZw9EVqk4SjpLe7AKTRShm+fm6alISUi0UjYQQYsHtApqlb9ILdJvnsbmKEs8hMvUQuB+V2on2K2sZW7EOn004whdRmFodkyQcAXcpHpvLWG+xlRqWruCfAPOYb+y9Ve5zEGKDopEQ0u/53KUPxrbZRKOt5Z8qFrOGoNNaBtrqMbrP5UUuozm+PyDD1PHtduEIQAtXZxGOtZ1vbdxEQhpB1XUaCSGEEEJI60OnkRDS77ntW/vi6O8/5NxfbUZ0WpKLeR3tfLHzh6FpAOXEF1nY2steeLov4UxsUZJigHhiTKZzO9xGF9YkmWqTVjI6i1mvEwSCIWlSFygaCSEEQFt7IXG/TSiq2211FMuP7eFoV41G7bxq2FkppSO/Cup+Ixnmmqfn4z8+PSHxvpqZm15aED1OEo4ANPHoajWoJsy41jfKc7noLYFYzbX60/IE0rtQNBJCCNI/aLOWz8krFm3Xta1P1BxGI/HFzJpuNdGQKSM6pbd0loQXW3FvSdY6jdWsR6zFz62VyiyR5oOikfQpFqxego0Gj2r0NEgLUmhLX+KdpXtLJULR9twlFoFyWFrtAKM+L58H+MWz76K9zccJ22+Sen/NRu5SOildY3RX0p5RraIKy1olp1QjDFtx6QHpW1A0EkIIgOtn7oYvXv144pgksVdNCNr5vKBnaVsdyISQNtC3hcYxk8YBAG5+ZWH2UjoVtBsEoIlPifo6pq2TrIe7m+dnd8buW9T8+oSYUDSSPsGC1UsaPQXSD2jL4DYCukAEkkViON611tHhXMq1i2o42uIqyvaBagKMdn4lQaavk1aDEUjvGqM5lwnrHCWqiKyFKOzLAp4QgCV3SB9io8GjGJomdeXaL02F7/upX0AoFOUXUEqEsdRXzCIYzXA04BaM0TGWNYyRSPQRJYW0wvpGeQ+f/8RG+PwnNrLcb7ywufpaqOdQH6etAy2UxLn8smGOSfpyccbuW1TlFNJlJL0FnUbStHD9ImkEhfb4/9JBUVgdRElamNm2XU+mUcLQ5vpFx7pF+byt4JdbCBoiVRUqN7+yMDze8zDjY2Oi7Xe98QE+u9Vo5701C7bXzpXgkuQ4Rsc51jmaqGHpap3CNAHfCgKftDZ0GgkhhBBCSCp0GknT4qHcG4yOI+ktrjx+JwDAzBueibYlJbNk2W7uc7mM5n6by5iFVljDqHLUx8dqz4+ZNE6r4WjD5TYCyckxJokZ1TVwBk/fdfOK9hHSCCgaSdOxcPUHjZ4CITmSYjIKuQShqJ5CW9/oKKejrnMsKI/DfelzvOP1xZqwvPvNf+GQLTfMdB/NghmiBmBNbEnrHGM7j4opJDP/vHMK9yvnvtNyYp+0HhSNpOkYN7j511eR1sdWbqUSZyl1HZshGKvBdnyrChFZjgcAfv3CPwEgqkX5f397P9M5NKdReayNMV4/qxuZ4TWe2bVZVfsJaQYoGklTI11HCknS28i2gkExqErM2cLPgFss+hZHUU1+UceYjmTsGqmCtbz/92/9C9O36Ftuo8R17za3MdwXjrElx6hkEZGE9CcoGgkhJAGX6KvqnAmC0fY48VyOUjH9jc9/YqPosVqDUbqPv3j23Uy9pVVUQWnbnsSpu0zMdA1C+hIUjaSpWLRmUfRYCCb3k97nv+9+EUEg0JZQYkclrVOISlppHpvDKLfb1jq2t/naPt+H1YGMzud58L3SdrVGYenhvW8v0Z5P26z6BDR5zoM2r30y262vLbI6hEA8scVsNxg+CJ+rjqNK0rIElsch/RF+KhNCCCGEkFToNJKmYuygsemDCKkzrrBk0liVSsqyqC6jud3mUCZ1KKkFtXAZgfo4jBKzFI9ErmeUoWmJ2qNaH18ux2OeJw//8ekJucYT0tegaCSEEIU2dQ1jofwwi4BUO5OkYROJtlZ4tjaCBWObGZqOleZxhKa1tZU1TvC49+0ldRWMLm5+ZSEA/XX9v7+9r2VHR8K6JBTVcjwqqpC07Sekv0HRSAghGcjiPqrCKynZIotAyyviZM3GSrCtb+zLmOVzTth+k0g4AtnXodqE4pen0E0k/ReKRkIIUehoL2jPbeLPDG9q42XyBDIIQ0Whqe6i3Ke6idJdlGNMh9F0H9VzuFzGJLF43ztLYvPNE7L2vfActQpzZ76uQ/WaPao1jNB0rKA3y+wQAoCikRBCErG1l3OtjQPcRaKTMB3CVsjM7W2xKHGtc/z37TbWnrsKgJ+84/iaz4mQVoGikRBCAPzg4TcQCJHYPtAUg20Fe6gz8HOU4VHdPoubCMDSKjDZZVSdxkpcxrz1DPsivuexfgghOaFoJISQEmlrEitxEaul1oW69eQX2/6+73JmwXQeCSHpUDQSQvo1P/7LWwCAdofDaIagA88QjQW7wMyebKE6fopD6FjDGO5PX8cIIKGYd7Ye1ea2Of/4EABwwMSRme6NENJa0JwnhJAGUetOI+m9pis+dQQFIyH9FzqNhJB+yewn/wEAGFDKlnY5g20WJ9E2NpYU41jvKHH1jLataVTXL8px0XZHq8DoOiWXUW7rjRqNhJDWhE4jIYQQQghJhU4jIYTUiUYkziQxfYsNAdhrMJqoGdQMSRNCAIpGQkg/ZUC7b4SdPWv/YYkm/iyhZ1sYOytm2R39e7zbS5byOuq5s2RJu0LUDF0TQiQUjYQQ0oc5ZtI4AMCtry1KHCddRol0D2VGtIv9JoyoYnaEkFaCopEQ0i+46aUFkTsYCIH2Nj/mFhbNcjolAiEsiStuZzJPSNo8r+x3rCa9qIW95THmce1qAo2R7KIee987S1JdxhZoSNNU/PqFf0aPpRt9wvabNGo6hFQMRSMhpF/w+U9sBED/AO/rSJcRAA7fekymY6ZtNirVXQSAfcbTYSSE6FA0EkL6FW2Kw2gW6m4rxMcnFu62jAfsPaldJPWdNsvuqGMKNVprmNROkLi5+ZWF1u1SyN/00oJom5oQJV/vX7/wT+caWLqQpFlhyR1CCCGEEJIKnUZCSL9CrgcMgvI6xcQi3IiXzfELdktOOkeVdnVJzqLW3cVqXEG1hI48D8PR+TB/xmnrWG3ll3zPqzjjnpBGQNFICCF9lLve+ABAWWwesmWYIX3v20tw0OajAJQTXyqptfjo+0uxxybDazPZPsZv/74YMz42JnoMAMUMAs8Vts7D//3tfQBuIZq0/OHkHcdXfX1CXFA0EkL6FUd9fCx++/fFKJTcwqI1MzpOnozoSgt6m+sWAUTuoq01oLrdtTZx2majEq+Z5DD2V8EImK+3fGR/n5jvIZeLbd2mFFGPzcHhhJvrYIFQSFIwknpD0Uh6hSVr5wMARg2c0OCZENK63Pv2kkjg2BzGh979yCkSH3lvKXyvfwtFkzteX9zoKRDSVDARhhBCCCGEpEKnkfQKdBhJM9HmlxMQMrfJk6HCLJHnQrb1b9ZDLWHmcijaHpJ2jTNJuleW29Gxv1b6zzSqvKSMVUPVaphaPgeSw9TheY2EGcs5JCftsGnarRBSMygaCSH9Cpk8Uim+l1E4VkCtsqNVHnr3I+WcHh55b2niNfpb8svdb/5Le54nm7me7wVCmhGKRkJIvyJ0Ge1OkioYkvanCbpACMfx8bG2c7mcRds2m7toG6/uk6Lw0feXauN223iY9X5amUO23BC/f0sVjtnVevhzVp+Xhb90HM1EmLTEGCC760hIb0PRSKpm8Zpy54MxgzZq4EwIqQ1J4d1G1tXLHEonhJA6QNFIqkYwn4r0IcJyNY4SJxlEWdIYaRi5yqhkMYmyuIv6NnfpHds1dUcyfNwfHUaV6VtsiHvfXhJzDlVMd9p0k9VjpeNorm8EHEW+E4rMJ7mObDdIehuKRlJTFq1ZBAAYO2hsg2dC+iuPvr8UgQD22nR4r1/bXOOW15m0CVKbYMwzn/7IA/PDdZyBEFrJoXvfXhIbK4ugA/l+Xo12nQlpBBSNpCZQJJJmYY9NhuOxfy5z7m/LkwWtkGW8bY1bnpBylrWL8cf28baxAKB2QNxt42F4YoH7teqrSPFu3rsqEN3HGu0BLetYbY6yKiLl9aXbCOgOo3MtY0KWtLzev2+3ceo9EFIvKBoJIS2PzCDu7UzXemfXukLS5f1uwdgqPPbPZZrjVxZ04eM5//gwsYXife8sSfwZNcp9tIWxCWk0FI2kaugykmaj3bDbVHdRfg4Hwt2+zSRtrZvEtv4sT4g42UHM5i6q40yROHWj+NpF27a+hLkeM+xs42VenmC2WbzvnXII27VGNcsyBNVtBOL1G4HktYxyv7qPLiNpNBSNhJCW5IkFy1C0lrjRP+CzuENJY1irj6jUeq0jHUfSTFA0EkJaDtWBC4RQ3B51/ZnqHHlO4Wd2jrFnXcux8Tm4xaYrpKyPyeswqu5iX3cRK6GWCVDmz9W2brE81u02Au71jfI5kN1xJKRRUDQSQlqSvA6iyzGsxJlMm0clpX2Swtw2wUiyM+cfH2YeW8+s6SRxyKLepBlggT1CCCGEEJIKnUZCSMsRtgoUiLeEE6UwYfg4xNP2m6ilW9JC1bYwtTreRp42gmaoWn3e3wt01wrbz9YVpraVVzLL76gktRiMrsVQNGliKBr7MYvWLIIQPsYNHp3ruAWrw+xCD4G23fMCZlKTpsP2AR6Gccsf/GmdXOo3tzxj42sbJQxLl5H9tFXdZf485b79JoxwnqdW74WkRKm8wvGmlxbg859gq1bSOCga+zFC+BW1ALSJRdt2QhqFdOHKyS5l564sAlQnMtxmL9qMaF+16xvNOca3xQt4m46iuZ+CUcd0AW0/N1MsHjBxpNZFxn1ue1KM/fr6elk5FyA5KSY6T0pyDCGNgKKRRM5hIArRNt8rOsern1FSMBLSTMTFXfjdFBAFL8yotgmNSq8lr5dcMDr9nLZxScc9tXA5AGDncZ3JJ28Bnlm0AkBZ4MnvthJLkkoFfnX/GGQ7liFp0legaOzHFEW702ksinC76h5KISngR9uF8CPhWIlrSUi9CIWXua5RX8eYtz6jKVJclAuIu5wouwBUHSpznG18Idrn9QuxKNlp7AYAQqGc/jMMW0umsd+EEXhg/kfWAu2yALha+Nt2nTTdx5qepK9D0dhHWbrudQCAEAWM6Ngi17Hvr1pq3a4KwGibIhADUUh0IAlpFvKU0pFuY5ZzubCJQNcxUhCSvk89y+8Q0oxQNPZRKhGL0bHwIYSvPVeexPHktyASjqbbmDeZhpB6Mnnk4Ojxi0tWYfsNh2j7n128QsuKtjmSNrcwKTs2q4NUXi8pnyeNdZ9DdRmJjvz5ZHEYVdS1jnKNo9q3etpmo2K9ql11OPXC8fZM6qL63sqQFMMkGNJoKBr7EEvXvQ6hrDusFKdgVJ6rYWnpQKpCkZBWwLa+sbwvbV1iuptZyXzU73mOe2bRiihs2+rINY31hoKcEB2Kxj5ELQQjUBaGWdcgegg04Rg6NEW6i6RPsO2oIbFt5fWOgLq+sZyJrCbG6KV5srhILioRIbaMatVldCXNtDLqmkZJrVsmJpfjcS15cLUctP+DkcdtJKQZoGjsA3zU/VZsm4CPD7vfAQCM7Ngs03nmr1ytHQ8ARYtxWPB1x1E6jOqax6BGApaQ3uDFJauixy7Bl/S8krVr2doYZtuXXp4n19RIhbjaDeZtWVkpN7+yEMdMGlfVOQipBorGPoDqCGYViDYmDB2Mt5avjZ47/4AF5U+ggl++thSOmw7tP1mapDUw3ca//Wtl6VE5w1pPUBFRqFp3jxIKNVv2ZXUWbW5i0mN1mxSMO47pH6FplUZkjKvlmdLcRvc58ruNhDQDFI1NzEfdb9WtjE0gRMIfvPKHZzGIO4+E9HXsdRyzJzToxb8rrf+Xf96uQt5ce9ec1LIYvOTmVxYCAB1H0hAoGpuYaO2h8DFq4ISanFMVi/Y/XnqHjHBguG2LzsHx4YT0QcysaVMMyn153cbq5mIv6m3rCKOuZQSAHUYPrd2ESGaydIjJcmxsH91G0qSwGnOTo2Y6A8CStfOxZO38is+nCsawxVr5S26X48pf/ONF+jZ/X7oGf1+6xrpPijJX8eykEHH8ebb5ZBmXxT10tRjsL6iJML2BLbvdvt40fkwShQp+htJxJKQ3odPYxMj1i6pIrNZx/NjwQdHjlz9cbYTe5B4znAJsNWxgVdclpJGo73uJGmJO2yezrV1uY57yO2mCwpUAYwpYSX92GZutC04tE2LoNpJmhE5jH6EadxEA3li2Bq9+tFrbZrZHK3/pLiOdRtJK/H3pmpg7pLqN5j5zHaEZQna5T64vG2a4OY3edhelU6t+9TdksW8bWXuJ58VVasf3Pfi+h1tfW1TReQmpFDqNfYRqHUbXP6zpgrD/hr5I6+NyG2VijLrPdBvlOLV2Y551bUlCIi1rWl67UaFpm3Pb6uT9Wedd+2pmUUfnMYTjUR8fm/2khNQYisYmppw9XZ0h/May0BUIRLxeXbxESLyOne95ePnD1VprNkL6Mi4BaApFdWxRmMe7Q9tZQpT2x+Z8Qlyh6Xoj/3awDmR9MIWlSzgS0iwwPE0IIYQQQlKh09jEjOjYoibnsWVAu+o0ym39eXE9aW1kaFWu8c3jGmYJUSedMy37OguNzJbealj/C0vnpdpajEluI0PTpNFQNLYwby1fa5TQEdrz8Ht1oZB/rAw7zHgIMGFoOXy9YPUSeAgS+1N/2P1OVR1uCKkGd4gakJ1i1Bp8trqNZncQu8jMMhdzXvbjbXUc//avlfA9z9pjuxreWr62z5XzeWrhcgRC1LwPtSRpXWMt63cyTE2aFYrGFkd1GW2Fvav9Iyd7V6vtBsPzFrgOivQZktxG29g0odjbFQdqLRhJdnrr502XkTQDFI1Nwuqe5xCIdgj4KIo2DB+wdeoxi9YsQiDasNHgUdb9egkdYQjIeMkdoPzhKYvmmnXQpKtRLk8Sfg+KoTNR8EPX0Su9taTj6HlB1ILQ84rhteDTbSSZWLB6CQJRwCZDhtf83Pae0VIQAmrHmIIHIyHG3ikmjwgNx+nZ0Gn/cAUCaKvjf2Vqj/pm5NnFKwDYIybN6o66xKXLoZQFv+k4kmaCorFJGNy2Q+5jhPARiIJzv979pSwg1W0q4YdhuM0V3gmUMTKEp7UeDDwUfB8eglLmd7E8X5S2i0IkHAlpJly9prMfHy/6DSQXEJfH5b1Ob7JFJ4v77zN+BB56112rsV4wVE2aCYrGPsQHa9+DEAUI+BDCj3pTS+avXB2tK/z70jUIhEBPIJTveqi6aPkv3fYf72P/XBaV/FALIPueiJ4D0vkIhaPn+4AAimiHhwA+ipGQ9LxADoMvuLaRxFm4+gMA5f7rSf8cVYNNJNrEoq1DjCskbXcuy8cntR607Xehjn1xyaqahaj/sTKMGDQjf/vXSuvfKPPnU++1jb1NwfPw278vRlEIhqlJQ6Fo7EOMHrhp9Fh+qCYRiPJap2cXr9DcxaIRqk5DdSF1h9H8EA1FpPywlyHpJCgYiYn6D1G9BKOZRe3CFT5MW9tYK8yONDa4plGn2btYNWLdKyG1gKKxj2O6jRIz/CwdR9VdNNc4qqhhmOi/+JLDWFAcxjZffnAKtPk+oozTUpg6EG3wvR5lfRgAgdBtJMSCXL9oIuDjvVXLsemQ3uk3bK5nlJjrGvVjdCFp2x+/hns/KfO3f6107nMJsCcWLAPgXm5TCfX4JyFr5jUdR9JoKBpbCLXkzTYj7N1bbIkwSfUaZYcY14eZuq8c2tM/DIXwYyIxXN9YrLo9Imk96uUsVottfWKaSKw3rKfaHNA5JP0FisY+jocA765cifFD3R8ezyxaEbmMgdNptP/Bk+sY5Qej75Udx3Y/nIF0F9t8oCcofwf0pBh57UJJQIomFQekcby/amn02OWiu1DX9OZBrdeo/nOU1HNahoyLCbUa9bWKtutmmVf8cdI2yd+Xhu3/WqVHtNr+tBKk4ygd4t027v21jrZqFZUiHUcAmPGxMVWdi5A8NOlyZ5JGUtFsF2bCS5pglPtc++OFws3v4QPXh/+YQRtlnjvpX7jeM0mh6UoEo4pNxNm3VdLFpXwu9bF6zqzldrJSC8E4cehATBzKzGkJlw+Q/g6dxhZh/spwMX9P4KMnEKWvQFvLGIhwbSOg13CUz1X0P46uBBgPvtD36cLRQ7HkPArhAx7KGdQZEmRI/0K6jHkdxmqxrV20ZUvL97y+XEM43UaJfl7b9d0uopoEU2tR6aIVfzeLInwtsyQVuXjkvaXRY/ea1cqXKaQ504Q0AxSNfRhXUW/J3/61EjuO2QBAWDanGgJDHCaVECGkL7HVsEFROFd+cCd9aJvr12RijGt9Y9J6t7TEmPj45P2SalzGah1bYv+Zc90jaQUoGvsJaoHv8vOkZBh1g6dtk8kugEBB+0NY3h4IL0qiobPYf0mrLWomvfS2yygx3Ub5XM6q7B6WH6s1HW3CEYh3iEm+vj5WumJq6Fod43vhP4bbb8hkmLw8sWBZ5ozqx/65zJnslCYE08o1JR1nQveRNANV/YW+9NJL4Xkevv71r0fb1q5di5kzZ2LUqFEYOnQoZsyYgUWLFmnHzZ8/H9OnT8fgwYMxZswYfPOb30RPT081UyE5afQfoLGDWC6iPzF20FiMGzwaGw0epX1lbQu46ZDOupba2WpY6My5xF1SWNkm6JKOy3LurPRXwdjI6EbSz7u+141vYxIM6W0qdhqffvppXHPNNdh+++217WeeeSZ+//vf47bbbsOwYcNw2mmn4YgjjsBjjz0GACgWi5g+fTrGjRuHxx9/HAsWLMAJJ5yA9vZ2XHzxxdXdTT9i0ZpFicJLFix+dvEKrCvqLp+ZAJO35I5aUkeuFVJdF4auCQAsWTsfef4vbZTLKImvR5Trd6G4h+WC9iHqe75cON++Jjjp2uXxqsOof++9dY3NwssflguvZwnzJ7l38m+VJKmGo9yX5dp5xlQzPjwm13BCak5Ff6VXrlyJ4447Dj/72c8wYsSIaPuyZcvwi1/8Aj/60Y+w7777YsqUKbjuuuvw+OOP44knngAA/OlPf8LLL7+MX//619hhhx1w0EEH4Tvf+Q6uvPJKrFu3rjZ31Q+oxqmjkCMkjnQbbST9zpj7zGSLWvy+USxUTzVJMDb4MyH9kYpE48yZMzF9+nTsv//+2vZ58+Zh/fr12vZtttkGEyZMwNy5cwEAc+fOxXbbbYexY8uiZ9q0aVi+fDleeumlSqZDHKhORfzLdDCgPda3lcervaZd1zK3kf7Hh93vaM8XrVkUG/P+qqVaXcZmwPW+N5/H+7B7aPP9aLvM1JVf7b7tdzD8avf18a7fVfN65u+XTOZpFdLaOwJu4ZYm5FWeWLAMTy1crn1Vcz31/WMeY1+bGv9ZEtKs5A5P33zzzXj22Wfx9NNPx/YtXLgQAwYMwPDhw7XtY8eOxcKFC6MxqmCU++U+G93d3eju7o6eL1/u/qUmIduMGJy7IG4l/znn/e896xo20lr0lTWsqtuoijA1lFhpWRVb+0GXK1mJiGiVQt6NhhnOhLjJJRrfffddnHHGGZgzZw4GDuy9gq+XXHIJZs2a1WvXaxVUd6LgCQReuVd0m+8bdRpd54ify+7AmC5I+TiZOc0M6v7B0nWvw0PBukZx4eoPou2h+CpnT8sanjZ6s+e0JL6G0bZO0bM+d61Xy+qMudwql6j8+9I1LSMae9sxraxYu+vnm9wdSF0zm1wbF9YxJne8HnaFOXxrJsSQ3iFXeHrevHlYvHgxdtxxR7S1taGtrQ2PPPIIfvKTn6CtrQ1jx47FunXrsHTpUu24RYsWYdy4cQCAcePGxbKp5XM5xuTcc8/FsmXLoq933303z7T7LZNHDrb2ps3yR9LWtcI+Ltsf3PFDh9Jl7CcMH7A1RnRsgVEDJ2D0wE2dnX+yZE/XO2u6WuKdXdTHtQ05MoTZ/+DPnDQbuZzG/fbbDy+88IK27Qtf+AK22WYbnHPOORg/fjza29vxwAMPYMaMGQCA1157DfPnz0dXVxcAoKurC9/97nexePFijBkT/nc0Z84cdHZ2YvLkydbrdnR0oKOjI/fN9SfeWxWG7IXwY32o23wP4f8HgRYeC+s0JmcdujI35Vosc5u5FqvARpWkRLiuMblmp9xnOo6NcKnLGdHxbGodWTlAHmd2ksl7zfJ51G3mvrylffoKavjfdOzM/fFjPe21zxtqTq6daCvYLY9TXcV4dyHb3LNkfKvjsowlpN7kEo0bbLABtt12W23bkCFDMGrUqGj7ySefjLPOOgsjR45EZ2cnTj/9dHR1dWHq1KkAgAMPPBCTJ0/G8ccfj+9///tYuHAhzjvvPMycOZPCsE5It9EsIwG4/wAn1auTC/3Vbep38xwMSxNJJT3Tgcashd2is7wEp9mSTLYZoXdtScr87s9UIhwJIW5q3hHm8ssvh+/7mDFjBrq7uzFt2jRcddVV0f5CoYB77rkHp556Krq6ujBkyBCceOKJuPDCC2s9lZZH7bZR8MIfZRHtmL9yNQR8dPeEPagnjww/YAYU/Kj3dLgov/wHVXUck9wOs0tFm19evxhmjyLaXvABHz3wPIrG/sDyda8BADoHfDy2b/GaBcizGkb+oyGzqxu9tEGubyy7iHqVAH3dWryuafxcruvEs2vVY2z/zL21fK0mcFuNtK4qaYlJSQ6gSlZxaXM/0+atuopJ3YLyuI7q+DteX8x1jaRXqFo0Pvzww9rzgQMH4sorr8SVV17pPGbixIn4wx/+UO2l+z2jB25q3T5/5WpMHFrZh0i29Y7ZY2FmqJyQVqDSDOpa0CoJL4SQvgd7T7cgvmdvydimrEGM955O/w83vn5R3y5dx9BpDBiW7qcsXfc6AtEOABjZsZm2b9GaRRAidBxdWdQ2pOPoe0Xr/o0Gj6pixunI93vZsVLXs5lrGvW1akl1Te3Xso9zOZStum7Yvoawss4sWUoZVRPKjmdL213QtLWZed1P9Xx0G0lvQNFIaoZ0QN5avhYAXUZCeoNKowqEEJIXisYWIVwzBgSiDR7a8f6qpdo6sDeWrcGAgq/UZRSlr3wZfPHuFPEOMXQZ+zdCFKKai0vWzkcAH0ChtK8yW8x0GHvj/fXuypUAQke04JfmHZh1GcPZALrzGD6vfKmHy21sVVdRIv/hbCZsRdmTsrptbiOgr2E0XeikbHBJUoULuo2kt6BobBFctfAIaXUqzchOQzrl81emt7OrhLzleFo52YUQ0jegaOzDrFj/CoqiDUIUMKJjC+e4+StXo70Q9sWV2dPhN09Z15j8Aeaq19iu1N6Zv3I1PATwvQAFbz0Wrl4Dzwv6TAs5Uj1BZe3s4XtF57pG1WWMugv1Yka+6mrGHUe9LmP43Etwjmzb7L97re4qupD1MbMmGtUyIclVO1G6jZWuswzH2d1GuU8lKVs8ad6E1BuKxj7MBu2TGj0FK83cwYP0TWSiy8LVHwDoO72sST626BzYlCFqQkgIRWM/wPd6wrVkfhvKjqKn9J5OqzcWrxUnXRAPgeb+cC1j/8ZHgMAL1zVWdR5HljRQf5dxweolAMoZ3Z7n60sYAbT5RteaQHd6kmox2hzELF1y+iNJ7porC7kWxbyTurXYMqPdPafjjmKWjjCutY6V1pYkpFb00wAIIYQQQgjJA53GfoCHAPAAX/TA88s18grwUCyZGFmy91SHRDqMquvDsHT/RnaCWbru9YqOT3IXJfVKelGRofCy4xi6m6LUN1tmgMsMccDiPFqQjuGEoYMTxxEdtQd4trWDtWsdqJ7LlkVtG2tzG4F43c4sHWFUxzppneNnt6r/7wUhAJ3GluWDte81egqE9AkWr1mARWsWYdGaRY2eCiG5YRIM6U3oNLYoaotBtV7je6uWAwjr5Qn4kUNSSMieVtdUqesX6SwSG8MHbI2Put9KHSffS1kdunqiuoaSjQaPwoLVS6LMbjlGW1OZYmjJubPQfXYKPkprRLNnUJvkcRttoiueDa+7ja4ajOVjbHUckx1H21xsGdbmtQ7ZcsP0mySkRlA0tiAfdr8Ta9/WCBavWQDPK8JHgFEDJzR6OoRolN346pJ2CCGkv0DR2IIkCcZNh3Ti/VVL4XlB5EDKzhdpqA5LFvfHy7BGjbQmIzq2wIfd70TPPa8ol6VFqGsDk6hXtrRfuq61yUuJjQaPwsLVH1hdnjTXke5i/Qh/HsmdVZLXCuYL6abVZ0zrEKPOwVWj0bVm0Zy/HD99CzqMpPehaGwBVq5/KQqtFUUbhg/YOtr3wdr3EIh2COHXPIng/VVLnYWXwySZ8tgPu99R9he1ORJCCCGk+aFobBFchb59BIC3HqMHldc4Frz12vot3+sBkH9tmS3bVXVehChobmN0fpYW6xeUs/bLnWLUdYz6e6X83lO317OIt+eFmdA+AgTwnc74uMGjo6LiZVeoEPt9kBnWpDqKKcayuU4wi2tXibMYnif+x8qVRZ3kNprntLmgZm3PaZuNyjVnQnoDisY+ytqeZxHAh0ABfTEJfum61+EjiMq0kNZh+brXSiIx/1rBeoSi1aQc2W5TDZ2rLF6zAED1vdz7c0FuQkjrQtHYRxnYtmP0eOX6l5zjPC/A6A49CcUMU5cdQ3f/3/hY4zrSQRJ+7IM/gA9fxF3IIN8//6SP4nlB6DaWft7CcOmk6yhdxUVrFsFDULVwS0Jd97tk7fzMbqOct63ji819JPlxtRK0rWNU1wwCyZnJ1eJa12he1+Y2qnOJu6PhgAMmjqzdZAmpExSN/YjFaxakfhDL8iL1RBZJBkJXim5ja1BeW9s451u6ilL8me0M5X7pONaS3vjdIYSQRkLR2AIMbf9EpnEuF0V2wDDXbanID8NAFKxuoyoEhfDLWbKlf6jDsmvh+rFo7ZfiPpHWQvaghig7iXJto7bO1eLOVbOOcUTHFlpHGvM9b+uJ7XlBphJVcg0kEA8/y7WMWbrakHS26ByIN5atiZ676h2afaddtRBNsjqQrnqP5rrGtOxqOZcsfacJaWb63mI4UhWL1yyI1m01C8vXvYYV619p9DRIg0l7by5ZO79m1/qo+y182P2Oc22jSSXdYmQbQlJfXMKw1scQQug0tjyqgxK5Pw7UdVtmFmgWB0V1G9VtpQfwvGKYIFFyHFFyooJShi3p25iOt3T81PeTr7w/TNdR7WJkI2uSzPABWzv7X6thazmvTC6j0Q1GzfaW+0ntSathmNbPOcnJM/s6m66l/Zj0XtTqXNKyu+U895swIvnChDQJFI3Eik045sGWEGOW4FEJ4HN9YwviecUoJKyGd5OQnVp8mCVt6jC/CsVe1nshtSWLsGsUrlB2npaGhDQ7FI39iCyt/FzrtrIKyNjaRuj164QI90t3MRxf3kZaB1nA/aPutzSnTr4vTFEoGT1wUy0UXUkZHvPcgfH+VcVsFsYM2giL1yzQfg/UjG+TRWsW1bXGZH+n3PvZvW5QjpNkcR1totSW7ZxFBCatYaxHdjchvQFFYwvzUfdbmbNEzQ/EarCFqWNjSiV3XMKBECAuGNWai9K1rra7kFzX2Az92gkhpJmhaGxhallWRDpFWes4qgLUdC6jtWHqesbS+kbSekhXL21doIp0xaWgU/8JUZc4ZP2nw1xLaZtXGnnqRtJlrJ6thg3SMqiz4gph53Ed09xGSaF0yqJIHuc6TzOH2wmxQdHYZKzqeQEAMKRtu167pitjNYtjmIRZnifpfFqZHkIUmGRCWp0H5n+kPWdiDGlWKBqbjEC09fqHZOTcyP94vfLaQ4lahy7JbTT3yecxB1JZzygQwPOKKFAc9CuyrFUc2bFZrGA3kO4wJiVUldsc1qfIN6kdWw0bpD1/9aPVsTH2Gonhd5eLZ/aiznJ8Us9rNZPa1XvaNV95rX3GUyiS5oeisUGUu2fEEfCxYv0r2KB9Umyfq56hbWxWZAs1lVpnh7qKgqswG5W4qCQknYTtPd+bLF6zAJ5XTC0zRBpLLcLHecLdhDQ7FI0NIhDll166Io0qOWP2Bla7eAC66yjgx8Rf1tZp6jhfuVa0nrGCLFnSN1DXD0rUf5qSklDULi+qYKz2d6WRSViu0lMkmW1GDAYAvPzhameXGBWzFqOLrB1aKnEb1Xmoc6CzSPoiFI29wNqeZ1FEO4TwIeDnctTq2SmlnIlaLoESJQnkqNNYSc9dm/MYwMeH3e/AQ8CwYQuR5uplXY5RD5G3dN3rVWdfV8MHa9+j29jkMFmFkDIUjb1AUBKKgWiLfXiqH1i2D1Zbkexaoa1llHXKDMcxHKjMxeEUqQIwj/Pol1xGzdWk49iSmLUR86zdraWwU539RglGCsXqmDxycOqYv/1rpfY8i+uYJWyc5HAmuY1yDhSgpC9D0Vhn1vY8C4F2bZutqLAMvy1d93puR8VDgJXrXwIQb+VmY8X6VyCEDx+wOovSGbKVSlFd0mq7xqiESTFl4ZmnxiTp+3zU/RY8rxiJOPn70Fuibum61yFEge85UtP1hhSOpNWgaKwzA9t2xKqeF3KJqwC+JhzVzioq1WRZy3PFnEXFcQTcrqNah27h6g9KQ8oZ1kB2x9GkVkKUNAfRmlmj17SKKQ57Y72h+vvUyBA1qQ/bbzgUQNxxBPJ3ZEkTekk9qeW+PTYZnu1ihDQxFI0NpryuUO/LbArHrKxc/1Kq22g6hKqzKJNgbPvSCiFX36+6wGSYFmFVzwvRGl5JtRnLZkUBm7ue5LjbKhaw33n/plLXL82NtAlHQloBisYGkLfvbRaHMc86QJeoXL7uNQQeMGKAHqKTfYBHDbKvw0rLsnY5jmYiDDNKWwe1OP2K9a9ESxtsnVls2IScWVYqy1IME/MfGwpGYsOWTZ3HbQTKwnG3jYfVbZ6E9DYUjXVmdc9zEKI9fWAVmIKx1l1lkmo2LlqzKHWcTTzKbUkh9kZntpL6ogrI5eteA1A7EScdR5KM+vsL6L+PedomNjPprf3q4zYS0opQNDaINFfNFZo2RVbchSxicNsOFc3J9YGdVEPPzKaO5iPK2ySu4t6eF7BVXAsjHUK1fFS9CrnbQtWu+ZA41bYObTXy9oq2uY2EtBIUjTVmfTAXQhSUeoz6h2PedV1JYedGl6b5YO178KJyPPb1jmlrINPgmrPWxPXeNeuSViPwat3VqK+i9pbPsua4lYTji0tWZRpXy4xmOpCklaForDHtfpdznwzBpZHFZVQ/dNVSNb2Jtj7NkWWtbbOQJHyZGNNabNA+KbF9Zq2p1fKMViDtNTfro/a3CgaVCkYKRNLfoGjsg6Q5jGt7ntWeD2zbsa7zUBMcAi/uOrocnyxOaVDqw+0hqCjxgTQfrgLx5j5SOdJdDF/f8muc5LyawnHRmkVaaa2+TD3Fnb0WI8UkaU0oGnsRNYPUFaL2HW6i85woWp1JzwvQUdip8slmIPqAVzrG+AhirqO21jHpPKTlGdr+CW2tYdLPnv8kVI4pxrOG6V01YUkyLuG487jOBs2IkPpA0dhLmGu10mowyj/arsQXGZKW52nEH/kRHVtg6brXo7kIhGs5nYXBoX+Y6eF2d4hdCB/wwsQG31sPH0F0v/UWxqT2mO9VrctQHxArzbbO9oO172klvESCs5gWdo5KZrXgWtAk9y/PmkbXWPP8FIykFaForCOywHFI9ckvWQSjKsTWFZ+C5xUT11lWSxSWVoqDw4PmqKp1KZOcpSzFzAUKgHGPAwo7V3UPpL6s7nkuehz+/HRc73dZOsqkGdYqmuuTGyUiP1j7nvZcisK8YlEdp/6OLlz9ATwvqChMvWD1kqjMlrz+pkOaV0hlFYN5xxLSSlA01pEhbdvlqhfnKuJtS3pR3Tb7ucJx9RSMQPhhuXzda1rI3UOQKBxdcw0fN7/TRPLhI4jW1UoBaROPfYlmchqFIczSBKOt2L5aDquVsqcbBV1G0qpQNKYgxEOQLqH84xsIH23+bhWdT65rrGSNn00w2rvDpBfOriVmH2uZCGMTjpK0jjh55r4+mFt3cUxqi4dixcJRdS5NKq1RKrH9kyd/72X5n2b5x0YNS2cRjEm94OU+KR5V4SiEHysCLknqQW/OQQgf765cqYfPS4+LgZyHKH0352d372xuXz2cvrxuo+SphcspIElLQdGYSlwwVksewRgWvk4vqaMKst4WUPLDNHIcPUSdXD7sfsea/GOuYczTZzuAjwKdkD5DvbL3ewvzd7IvFAfP4i7aCETBWYS/3uQVe5V2cUm6Vt56jeb4ncZukH9ShPQhKBoTEOKR8Dt8TSwK+FhXfCp6LP+7DyKBqf6BzrGWMUPmtJZdHYWvi7FtjcDWX9i2PU9xcxeRo+KFrlVP8BgAVOwAk/pjOoSNqi9qoq+ddL83pQvZm1ndH3a/Ez1WXUTb75DcnyYYbesbbX83soSppQPpunYWijX+k5UmDOWYvMLRdUyS0PQ9D08tXA6AIWvSGlA0puAKtdj2VUNaSBrQE188BFoCiBRNjcTmwCR1hHGRV/iGRcBZuqfZkaHjpPByNeetBUmZ3X2RLIJRbpe/P7VyG9PcTddcqs1iLu9P6zmdP2lFPWbHMemuIp1H0mpQNCaghqT1MhaF2Boim8uolRLJIZ5cWdLqvr7A0nWvA9DXNwL5WynmIRCPwvf2qMu5SW2o588/idU9z+VeR2kTkUnJbZW4kMvXvRZ7PcrVBjJ0c8mRGZ22v1n/8arE5Us6Lst5AWZIE2JC0ZiA7+3RKw5elrC0iVlmplnDslq5HaODjPygdNWaTKrdSPo2jRKO1STgAPp72KSasHWjXo9WoNq+0XlD1TuMHlr5xQjp41A0GojgAcBrg+ftVd5muIzlx7rLmIbWWs/RxaU81u0ymsf2BI81pWg0y/CYTkeWD8o8CTKkuTHbW+b92Zr/ZASIr59d3fOcNVythsQrWUtpCs1qwthqoX/1OO33JaFEVRayJr70JdLEHZCczVzNGkfXuQnpb1A0Gnj+ftpzVYytD+ZWf/4qRZDt+GYUjCrmB6DaizqWNJMipknfxZZFbQrJJMz3Sm/+Q5HmUDbyPWr9h6zk0qvisZL1xY0gLbEkWfzlP3bbUUMqmSYh/RKKxgSqXR+niqMsY6PHKS0Cmz1su3L9S6V+06XajYa76upFbcsGV/dRPBIbqvD0lee1DveqDmWSgNQ7QdnQ2yamuY1S7OX5e+IiSTjK3z+/l+q8yrkU/DCDWhV1aeIPSC6bE+53H5t0PCHEDUVjAr2VUGETjNZxfShUa344ma0EszgeNifJQzG1Gw7pO0j3MY/jmJValngyUfutm6S1OZT/VFWDbWmHTVT6XjEWqm4FxzHcX11CChNaCMkPRWNOzMQOM6nDDGMluQPxtoH28jrm9YHmXccIuN0TOfeoY0zsuPT7jx2DIOZMCvGItiaVNA5ZzxSwZ+92FHaq+xxqEcZ2CU/1d3ZVzwuZ+2Jr65sT3MbU81jWPpqi0CUcbdhK7eT5B029trxuFqfU5jaG5yiPybteMe1Y9XhCSDaa/9/NFsDzdGfMfG5iW+fXl1xG9YPTGoZOCa9nWecIhIJjQGFnrQOO7+1BwdgHafauMT6CVPFZTbHyap1zs0+9+Tcjb93Fev690apFWK7jEnJ+gr7zPY8CkJBegE5jCkI8EnWEUWumqf89A+baPXvoKrl9YDxbOjZGWWvk94HwrOY6KPdl9qGW2DrJqB+GeT6Uw24+ATxvnwpmTtIIxKOl79n7sJsCQcBHd/GZyG1M+v1IW8unHlvPgtzm+9jEVQtS/iOl1niML+HQE8Tk74m5rhGI93R3rX00nb8sVFICzDw+LfxtVpJQ1zaGc7U7iJU6j6bgVI99+cPVmDxycOJ8CSEhFI0VYP6Rdo7LWBPOJYZaZd1e3vBbLe6bbmNrUYskkFrjeh8n/d434j76yhpGG5WuO6wmy5oQ4oai0YHomQP4PuCFDmMsI89D7L973/gjFMDP7I7ZXLbwMm4BFYhHS2v6mksgrep5AV6pA4zpkABll8QkvsYz7jKqSTDdxWdiaxrZEaa2SEcxvj37mjsAsXV3QPnnW173mN1NrMW4LKQJPFeyjRltUPtbu5xAc195W/yfVHM9tcuRlPeQN9zseg3VCgjmeNtrlbSuUaumoLiNgN6P2gw7qxnWJqoQTMuUTgp3E0LsUDRaEOvuBTwfCBB+jnmA/PsS/ofqR63xwgMQCx0B6aEsSR7BaFsPJMRDTRmGlR8Q5gdNcpjeVszcUug8Yd1jGJoGGJ6uDptgzCoWzZqmWYpV28LXjSZrEe808Qjoy1WyCEdX+Z3wXH6icCxf017eyryXNJHo2p5UvicmLB0JMdF25ZwF47QuEekKQ5suYlqZnlc/Wo1tRjBETUgajf+r3IR4Aw4Kv7cdECv2DcC6njDtP3mbs5ZlcX0Wmk0YuTJI0xJ6srghrRKy74tkFYwuojW5Faytaxbq9f6r170m/r6VEvLyCsZakPd1NEVkGi4XkQkzhFQHnUYXItAfl/7O2JNhEhaiJ3Q/sZEl29j3VPFV2z/sQjwEwK9ZyNsabnO5F1YxXkwsv6OV6bHsD++n+YR1rRHr7o3+2XGOKb0WIfFP4XLCRDm8n0Uomv3ZE9f5KsIxS5u8atfjVSp8ku/BnXSTVBsyrRxXUvg53BavdaqOA4DA0EOu8la2+6vktUoqHST3qSV/XOPNULVtnqpwNBNmJLZyPWlFvs3jCCFu6DQ6UD+APX+/mOhIy15OK6uTev2U0HSzM6Rtu8w160j1pAnGSvC9PZq2FmgWmvH3xVzjnOVvRGqpnwoznM2vRtAskQO6j4Rkg05jHkSAcJ2cD8CPMvBMtzEanrKGT3UjVfR1fXGXsUyguaC1wYeAD5GhpMrqnue054PbdgCgFznOWthc25dQ5NzWajBLCSIRPGBdatDqiOCB8IEnfw76z8PmOFVSOL4SN7CWbmOtRU9md85Yxyyp1HG0tdrU1x7GC+Sbpb/U6yYtBXC99lmXD6iup2vOqtsIIEqKic5hHBNb/+xY52pzHQH7ese0hBnJ35euwceGD0q4Y0IIRWMOTNGhZlWbC//rOo+6rjXaC0LJQO7tDMNqCiQT0qoklamyiepKWyg2S1971z8KtSofxJI7hFQGRWON0LKpEV9LlORSxM4T7S9q26wuI8LyQF7bAdVMP5F1xaei+UsHwfwwEihoZUXk47Soj00kalnSWl9uu8uon89Y6ynqJ7CbEdEzp/ykVDKq9KQ8xvJeNNcumusUtWvUaFVLmsuY5ToVrcOzCKNqHc80xxHQf2fMkjwuh07uM8tUybWLtjWO2vUtwiiLC2nO3XYOs5xS0npFs7WgJM2lVDHdx6yuo2u9IkvuEJIfrmkkMRpZ57CabPJmXMNGWgu+x+LU2p3MXI/T8rOwZVlzvSIhtYNOY4XILGNA/sfrG/9px/8Lz4OrZWB4nrLLiCCoi5vWEzxWWttYyOQypuEKO+cp8h3uK8a2xdcztvYHu1h7D7yBB8e3my6j7dgMLmPS2FqStKaxltfOImryrP1LqieZJbMacLccNdf3uTKT1dqMco5p66nzVHFIw12XMpvbKAks6yLVeZvZ2NG9OFxHALkKhJu8sWwNthrGdY2EuKBoJH2GShyNVkx+sQlGAPDaDtCFYwQDCn2VvtwCsJmptD0hIf0disaqCIDov+eg3CmmhFCcAJXIfUwQQbZ1jJrLGChr9kQQdrFBbUqvSJdRn3N+lzGLu5i2rrM8Lu4wAuXXx1q3suaZ5X2brOKj0SKlt13GPOdIaodoa62nYjqFQLLjaLp0rlacgfF3xlabMakzjDnHtHEuxzPP2sboeCWrWo5JmrMty9x2HGB3HPVr848DIXmhaGwRalmnzyy30l18pmbnroRmyegk9SevYHSVZiGVUe+6iXROCenbUDRWigiizNRyLbJAWx/mdiCMAr+WDzzdQTPcM3UdowjqUtg5K2Zv3axrF21Z0bFzO7KkzTWMTpfRgeiZE+/4ow0ovfYd053naCRi7T1RWro5RzOLXu0C4/rAdr1vM8+nAhFgOnbVCgmzk0gS1dxfYuQgY7UEm1NXnlvZcUysX6jsi7mWFmc0bW55sHV5ktdNcxtdc0la56iOc2VYaz+jhOxqFy43khCiQ9FYAaJnjjPRwPwABtI/pFJFkJr0Ip/LrxpRi+LXaeVzgGSxaPtAdonF+GtqF4HqGr9IULkEo/ZYhOIsCOANPjQ2r0Yh1t5TwVHlZRRJwjEanbPHdFb3yBbatR3nKgivXdPWMjKHcMxDUuJLOJdkkWYeZwofV4KMK1TtOpf1PBnnZruvJMz2qK5Wh/K8rpJENtFnhqxt45LK8ySFrF3k7W1NSH+ForFKZI9mD0BQ6qJSV+pUdzBJMHYUdsLanmfrcl1CCCGE9A0oGjMi1t0bhaPLBZPtmM6hzblxu2YW58vlMPZi9p9aYDhvlwl5vPbcUkbH3C7J7DACuqgO9H1i/X32ceZz+bqWjher7oQ35LDYvJoBse7e5OUJ0TIKeX92N053etz/mLhcyCRXJ0tZnSzuon7OeEmZLCSXakrHTHYDDIfTyK0QFrcseu5ZEkOUNoCqc+95RutBlJ2+pCSZaN6WZBmTNEc1Nj4hTK1ew+Y4qnN1XbsWpXmi63LNKyE1gaIxI41cN0iIjSxrLqWDrK5tJIToTBg6uNFTIKRPQNGYQpqTI8Qj2n/kaevBkt0NyxpGc82d6TIGzfsftKuIcFo7QNtrlMthBOKvS1JYP8FlbL02hGXHUSXNfZRkcdGT1jjmXcNoutrme8p0HF2ukqtUU9IY25ztv7/ldcyxcziquthcOKB8HwXoLp7pPKqJMjADDjG3M77eMUsrxTzOo63Yd5LjWB6jO6TmtV2JMq7XLelcNpjJTUg++BtDCCGEEEJSodOYQt6wtC172p0dLVFcLdPhMrOkhYjGNFNWr4kfuYn29YhZ2gHaHQLLtoR1jFan0JYxra4Ptf0M+jrqPWhrHE3SHRqb8+ZsRai4V66C8UDcUXShjlPdM7UoddoatuQ1snGyOFUuB9bl1iW1Gc1UVsdSmkeOdRXINrO1Yy0AE9o6qnM0ncKkouVp92q7X3Wuruxq1xpHdV7muUzGDx1q3U4IcUPRmJGodIvvK4kwNGpJ4xDdv4+ta4ySfdRkLUd5KEIIISQPFI150D58E9b3ONYtJmZJmxnS8jFgXWfXrNm8QH6XMVd2NGB3/ip1GIE+6zImJsKIAF77tPCh+g9PaZ/7pElXdLs/acixpuujOlJJLSlNPBRjrqO6vjFLxmxmJ1u5Sto5bM5jUsH/pDqKWWoxJrUfNM/lcgXludT5pDmOSW6jeu4kx9E2R/Wc8p5tY9LaD2rnt/w93nRIp/P+CCFuKBpTEOvvSy2xQ0i9Eat/Fz6wuIay7zjfp4QQQuoJRWNW5Id1hR/Mzi4vQKwtYPgl4vvM43qRrHX0XBnTQDxbOn1tWQb30JY9nqFFYPm5JQvdcBm9oUdY5taExNYtGqRl2vt+DhdSb22nruUtu4qFmMNorqNT3cVctRoNR1TOWjqOZaeqoL3v9PacJmm/W+b+ZOcxyXW0u2vxtX9p6wddHWSiOZgdWBy1FWPtDFPWN5oknRewO47h/Ox1LJNaELrWN5rnkW6zHE93kZDqoWhMI0UkJoXoMiW8yOcWsSgTXcTK2xsqXLqLz8Dz9IX0eQp8ewgSC3g7w/aStHI6tjGp4WlLSFod00Th6chlNLd3/z58YHuPikAvZp4F262qzqZ8LYxi4WmYgjFJKGYJeauFrZWNpWsooWov/l4LhG9ZPlLpzzhZRNpKD9n6fGf5G5LUgtAmHG3ncQmx8E4sAjhBONrm7RKO5jzNa0hMAZnUMjBNOMpx6ndCSPVQNAIQy28NPwj9tvB7oRB+l1/9kPXBXADyD3n/fA1I7cmzbpGQWvL+qqWxbZsMGd7r8yCkL0PRCMDrPMq5L0oiiDYEitOSttje4X7JkLMMf6aU9WnG8GhSGBoouwOqy2gmvsRC9pKsYWjb2EyOo8NlNI9pApcxE9F70rLdRZbxnq+/PmoijRd3y7QQtRKaBkInSwrGPO6irV2gFrJF2YUKE2AKkduYjVr+jMMr9waqq5fkNqrjktzGJCcwr9soyZIcY14rPC49PG9zGyU215EQUhsoGgkAQAQPAJ4PgbbSBz/dxUYjVt0ZPqiH2+0Smk1C3l7UhFSCdB/pOBKSDYrGNCJ3UNkmP89c5UmSnDJbSZ0mIkxQAQIhy3QUgeixvrbIeryR3KK6jPHEl5QEnyxrF23bXK+rMPqt2dYyKs+9DY60n6e3kMJOFXhBUEpYEYDn6WOBfELQ9Tp5dkcxurZtH+wFvoXwnS6j6hSliURbQod6DrnOMeZ0eQAEot/VeGRAXZ9Zf8zXKMsazryt7pLcxiRq5TZmuQ6Q7DgmlR9yuY3R+ek6ElI3KBoNxOrflQp4e7Vb09ik/aFF9+/LazkbWQC6N8SzKRibHLHy9kZPISTVkawsJFttz19TIJK+R96Euoqu4UiSIYRUBkWjiQhKn4MJDkQQe+A8l9c+DfBRrqUnguSizI0gumeUMk4BuV5TdRsB3XF0EWUtZnEZk1oAqvOrZJtNKKYVARdBU64htWK6jUBlAtwUhaZraROOSlckAd/ZRlCfrp/oLmYVENKpsrUOlO5i2rpGvfi3et1KhKh93qYwDhwuKwCrk2cT1jbHMKmMkUlaFnValnMtyvDUkixOp+o82qCoJCQ7FI0KYsVvQtctdWBzrwdLQlsn5/vOELtMasgbfurT5S2aZLmAWPGb3n1/1fD9LODnEhaNwF52p7mo1ontT1QSIldJE5WEkDK5ftMuuOACeJ6nfW2zzTbR/rVr12LmzJkYNWoUhg4dihkzZmDRokXaOebPn4/p06dj8ODBGDNmDL75zW+ip6enNndTJd4GR4bt+YIeeAMPhtcxPcxsDopA0FP+EoH+POlLnnvAQeFXg11Gb8hh4VepBqRWIzIqJB5E7qDvBdHaRM8rho8TvgDExqrZ0plcRq1upWO7irZOVJS/VILAfg3lNYnNqRkwi74Dxn1Y7rXS6+S+94SsZ/jaesZYxrRSu1F+Wc9jEaDqeCH86FwuZ04KWTWjO5Db4RvH+RV8GfetnDMQfvSl7pf3Jr/M49V7U7/M18Bsw2hzGfO6fdkzz0Nc/yjW0mXU25DGr6f+/cnLRoNHVTwvQvobuZ3GT3ziE7j//vvLJ2grn+LMM8/E73//e9x2220YNmwYTjvtNBxxxBF47LHHAADFYhHTp0/HuHHj8Pjjj2PBggU44YQT0N7ejosvvrgGt1MbYuHJYo/W61msvSf5BKUP9UiYNSnewINL9xLYy/6IRwAgSowBEPX1TTyv8sc7FJ57hKcTD9kPMPs9a3NQkkHM7dpzh3BKSXbR5t0kYWlvgyPdbqMtMQuofE2qK7xtJuDEKIugQBhCyCIYUzvDJLiTsV7Fsu8wyr2Y9S4w8RB1OWGmGIWmVcfR9p52iqGU939SsospEMvb08PO8Xlkc3STwsSuEjl5wtSu18OVOFeLdYyue6rWdSSEJJNbNLa1tWHcuHGx7cuWLcMvfvEL3HTTTdh3330BANdddx0mTZqEJ554AlOnTsWf/vQnvPzyy7j//vsxduxY7LDDDvjOd76Dc845BxdccAEGDBhQ/R3VkCgZwfzgbNLElooIgrCYeR1oeAgw6efURI6iWH5r9DipZmh9Lm5ZF5mGZ3f2Kg1L92Y422wrmPv4nIKR9D4UjoTUj9yi8fXXX8fGG2+MgQMHoqurC5dccgkmTJiAefPmYf369dh///2jsdtssw0mTJiAuXPnYurUqZg7dy622247jB07Nhozbdo0nHrqqXjppZfwqU99ynrN7u5udHd3R8+XL1+ed9oV4XSeAnc4vVncqqwku6GhsPK9veAruqIneCzxnOk9pWEPtbqopPd2UsJLE/TythETjDaXVU1OUZ/n+UfGdCVNlzaHiAyU8C9gD0urLmOQwXVLIkx2kT2Wi9H5XK0DA/jwhemoFaK1vIFx6+p7N+ucsjqL8X16uFkfVz8hbet7DdgLftvmFo51l8VJwzd+PiZZ/4lwuY3Zf27NvfaWkGYkl2jcZZddcP311+PjH/84FixYgFmzZmGPPfbAiy++iIULF2LAgAEYPny4dszYsWOxcOFCAMDChQs1wSj3y30uLrnkEsyaNSvPVOuCWPGb8pM+mgiTixolSAjxCHqzFl5fQSy92RpW1t5naT+DSn5Gar3FGtIb7o6e9Zw2tgAPRWNb9uPTqMZVTBKMvQUdOUJIXnKJxoMOKq9723777bHLLrtg4sSJuPXWWzFo0KCaT05y7rnn4qyzzoqeL1++HOPHj6/b9VyoxZ7F0pvhDT+m1+fQm3j+ftbtbf5uCMSj1n1y/aIkJhiTkl+0A1Oely+gP086J6CtTW1WtPeZKiCBuMPo2paGzZmMCncLABYx6hCaaoKJK/lFdRnzrOuTmG0EpeNoW98ozyWPkW6jPI+AD4iSW6ZcX65zrARXqD6+Pb6m03QVG9kNp9ZlcipZq1ktWcQwXUZCKqOq397hw4fjYx/7GN544w2MGzcO69atw9KlS7UxixYtitZAjhs3LpZNLZ/b1klKOjo60NnZqX2RvkIFrk6WkHElWcNNFIq2oa5t1HdknHcv3p+ZAJM0LtP5cnaEqc013aHjPGRd22kPpaaLF3uWd2vSiHJNspUgISSdqv4KrVy5Em+++SY22mgjTJkyBe3t7XjggQei/a+99hrmz5+Prq4uAEBXVxdeeOEFLF68OBozZ84cdHZ2YvLkydVMpddpdZcxDd/bA763h1Zux3QZI8xSObbyN7bH6rHR84RyOnmcyybAG34MvM6jtC8nrvJDrnGu8kRJZFkX6cXLzESXdgi7NJfR5UbFSspYyuvEStYY7qYUZfJcruO1NZl5v5RzxM5jlMuJ5lEqj2OW1AlEW+z8+v0kf+XFVqomS6edSgV3kstYiWDM2xUoEAW6jIRUQa6/Mt/4xjfwyCOP4J133sHjjz+Oww8/HIVCAcceeyyGDRuGk08+GWeddRYeeughzJs3D1/4whfQ1dWFqVOnAgAOPPBATJ48Gccffzyef/553HfffTjvvPMwc+ZMdHR01OUGSb0JlK8yQjwUlthJEy31EHMJ5xQrfqOFfJ3uXp0RS29OH2OGpq2Dcrx+dRLOUhwBtQk9mueo5JxJIiaprmPu62Ts5AKU7yNPkospOm01G81rN4sjmcsdbrCQo9tISDZyrWl87733cOyxx2LJkiUYPXo0dt99dzzxxBMYPXo0AODyyy+H7/uYMWMGuru7MW3aNFx11VXR8YVCAffccw9OPfVUdHV1YciQITjxxBNx4YUX1vauSK/hefvYd5gCxeZipWUxmw5j2vnSzmm7RjOXT7IluWTdZu7POjZjkoyZNa1dTsma1p2/+Dq/rAkhZpa0XJsYZe6KAgJP3x+d30OUECPXPqrnsM0le7JNsuvqWrvoEq65xLcovyYSL6HupEqejOe0HtHVuIxpYjHLubOuw6TDSEj1eELUop1E77J8+XIMGzYMy5Yt4/rGJkX0zFGeZKyXmFawO0142ra7hKPZVcWCN+JY+7krIIuz6BRrLpHn7Aed4xxAXEjKeXheuF1++eF3gbZINAaiXQ8/KwkwavkdAFrCTPjcLhhtQkKtrShFkmcp7eR5RW2/Zx1b1M6ThCv8mSRSsgrFSgqd2+cYf230/fn/MUosB5RQKilTb+waCMXYMQllj4BsgnGTIcNzX5eQViGrrmLvaZKKWHdvWVQY4sNrO0AfK8VipmSWKtbbZRWilV6vBmQSiip1KoWT2FlGfa7WfMwwj8QuLjk++NMEo9xeSVHupBI7Zsa1/br5fh61FoxJr6PqsrqyyOW18gjHRmVvN0tYnRDihqKRZMPVzs82Lq84yxqGzisGXS5m1Law/g5jTHylhcNtgs0VUq6mjqZZJDzzddzrAZPW6tVyzZoZYpbzkSLKGoLWSu7IotTFxLBrNchraOF5h2BME4rWdnlKaN1W8NwmHOVxecjqMrqEZlaXsVrB6GpZSAipLRSNJB1VMBqiQqy7t/pzR4/rJBht51SvVUMHMnIXfb8+rmFe8orKnEJUrcto25fr0mlhywxuY9oYXWjGi3/XgmTxnF0wJr1+qgi0uanqGlDzuErC1ZWQVZDnFYxZ1mNWUrj8/VVLIeBj0yFc8kSIC4pGko16hnxVAZcWhs4blk5zGEv7vZHHZZhoDfD93ku+ySL+srjHlV5eSVBQ2865x6ePyYor4cWLOZT1S45wJbuYgjHNWXSJL2tCT+SoFrVjzcLn4Zj4zz3rOtM0cVsvh1EVx/XoaFOrbkGEtCoUjURDrPhNOfEBUBIgSs16U8PTVeRVZe0X7RqTtC9PEk0K4qP/Fz7I0aO5qamjcKw3NsdNuo1JYWxT6NTafbMJxix9krMKRrnPvL+ksUBcPOo9uasXYPVyFwkhzQFFI9FRxYMUEwHyhVqTWtSlja20naBrnytLWgTVu4tCuIVjLZNa0rKnbfvzhqUrzbyWQ1DUXDvVBVJLtqjbpROp7a+h2wjowiq6pjIXST3WwtkEoyssbZLm1JmJL9H85dvR+N/N5TxmWYuY1WXMWlKnnoLRVX7H94osuUNIDaBoJDpBABSUJAlVOFZ73iTy1GzMsj3pmhW4apG7mId6ZUMD2cvwAPY5JP081PEpgtHzAvgiFAxSOOph6XiI2hZWTKsFmBVbX2ptv+E65qHS0GVWQeruqGNbL6onvgD2cLWaYS3HA+41j3myuZtBMCaFqCsNX7+3ajnXNRLigKKRxGlEqNJyTW/oEfahSheXxNZ70MVeVVnRzsziBLcRyL9+0RR4aS6i67HtXFn3AeUaja7dCKzrAVXH0eU2qvtszpAq9lThkbfkjhqmlmiuXEbSRKbmWGbIfLbPNbtgtO03w/HK5LR5usRj2rWT7itTyaQmCEf7yvsnyXWkYCTEDUUj0QmKJSFU+iAsFXSORF1CzT9vgyOtp3S1w3OOT2ntlyYUtbG1LJ9TqXBMIktB76Qi3rai3NG+Cuekhr3lY9+PzcPzimEY1AN8NZcJ0MOkpce+AAJ1SvIYZb9KAN8qFG21FW0OoiqSJEXYw7yJCF10xrC8zEnJIa4EmLzj9Aui1EJQn5+aHa4WPY/c3wT3NK3bjW2uec4jz5VlPWke11Den+cFsTB99E9MRgFJCNGhaCQRYskNSv2+khAKgmwdyrOsNcyacFFy56LyNULUVvzlRHx4Y4ZBUdpqtpMmZVFnWV/oEou26ycV93aUUsq7JtJ0DNVQtRQ0aig7PEYPV5u19mwCLdkZMxI7LOso5fPyMdkEg8uZy+pcps3buS8lkSZ63b1wv/o6ymOi+pWGODfbKGYhr2AElBB5L7qN8jUw31MuV1iKyEAUtD7U7BJDiA5FIymjCkTPLwshVdyo+iSj45fHGQQAb/gxucb3KtUU1DaxuYwu8ZbmLmYVi7Z9SY8TwtgegtBlU0QhgNgaRzlWFY5A2Uk01zkm9RLO0sHFdK5iodUK1jK6wuSutYHm/qw46ze62uSVXvvoZ2CIWFs5HlM8qmNNqk0QSu2BnSNr3eWKJi0PMK9j6y/uK786TJghJBmKRgIAEIuvU1xG84+z8oe4t2oMNjMu4ZjHZcxCkmC0uYtVuoWJxxnbfC9AYPkANh1FD8XIBTMdRV8RMVI4queQ5C8SXjtHy3TjXAIyc6mZKgWJKYqKoh1AWfjERJMqDI3M6sB4u5oi0obtPs2M90auX0wTkC7x2AxrLgnpC1A0kjJqeR1bSFl1H/sTNpFo3ZYzRG1iE4e1EoyVCEiHuNVcwZLbGCVYWJJfTOEIlIVhVHLHcY7wFpPLw+Qlq8AzQ89ZspJ7C9MNc7ljUkyqRc3TMsxj16owWabRJGZWx5ZTKO9br4iNBo/qlTkS0tegaOzHiAXXlpIdFOFh1mXso0WfG0qWjOq8pXhiItAiFmvlNGYsuSPdxihMDcUxVJNfFOEYjlHa3pXEpBSO2jkAq3hUSROSWQVP+Rrx0DOgC8jeEo9mr2r5PMgh1ILS/zG+4TLa6jmazqN1Tjmyo7OI/Hq3NExaT5m0DIIQYoeikZRFjqsuo0VAeqOO7905NpqsbmO0T/k0zus8mi6jM+klxZk0x+elAtFpS26x1XEEoIswx4d3WugwKYydtXZg2n5XLUSgvI5QPd4lHGtRtNwlGJ3ix5PHhd99T3cds5JVLFaylCBpHrVq6+cSj+p7j+4iIelQNPZ3RABvo69kH66ufexvuISjJE1AquLRdBtdQtEMSasOo2tM2nyqIgAUoVROIihl6Goh0JKA9AJ4kWum1GtUBAw8oFB6rDpeLtcxfZaOhJIM2cgmSRnI8j7KD+NlftLcR1W4uIqcC/hWwejqb23OXQr4QBiuo60EUgJJr1+lxdJdvbCdiS8Z3VzrPwCO99K4waMznZOQ/g5FYz9DvHdV+MAlNFJP0M/D1YnuYoqArLSeo9r7W57bJhit86pWONp+3kF0XjPxwPekeJRzjXZasqcRK8sTztjeVrCa0i02sRNLcCllIZuYGch5nMckUl3UlP3mfcjvReXyBV+ZU0kkhsKxqN1vnvI7qlhUj8madSzL28RD/OnuZ57wv6tIPCGkciga+zHeJqfkP2bsyXWYSR8jS9kdl4DMIxzTrpEo/O1uVewUqQJHHmOOC4z9uqhT1zuKUmkde2keaGV55BrHSnCFudMEo/o8Fr401jKG5yiHoNUuLPVen2cjSTDK5wXt7edrwlHdnjT/pNc1b4maQBS0a+cha/JOVsYOGluzcxHSH6Bo7AeId/83fNBfw8rVYktcsTmuSQ6kbZ96XtcYW8jZWqfRhykUszhHlQlJlfhYKYl9Yz2drOkor1te74iYWJR1D9Vajub88jiONrGYJHZsbpgUXGY7PlM42tY5unAVNjfvWbsXy89ZisXAVt0g8FDw486w7f7SkkNsr18lYWl5rHQ8bW5jHteWENI7UEX0A7zxp8Ebf5q+rQKXkaQgAnf4Xt1ei7JFauHtDP8MBMLXvpLIJQKs91vqxhGteyw/ly5RkhjI6tilCYoksZbmjgWi4E46qVCM1xspGANR/pLbi0E4JwE/6hxjew1cjqL8Kl/LLhiF8J1f6vnSzmMbW75GbULNdBkJyQ+dxn6Et+lXGz2FPof44FfhA1nUPMsaUJcLWWk3Gc9zZ0dHz+3h1cD4sI4SOlwdV7K4POr9BQEAixOr1AcEfM11jNbPKX2rpduorm0M7yqI3EYgLhjMNZWmU6aKpPJrUsgs6gJF3/uKU6qu1bS5jXkw1y66kmFkt5KktY6hWBTac98LJ16wNcmObkNxHGPvIXsykUsIqtt0xzVep7M8x7LjmNQOsnwue4eeJMYM2ijTOEKIG4pGQiyIxdeFD0yRlrUjji2crQpHrbe3Hx+XREp7v2iqlpCs7QPYdozvEj5SMJqvg9Zq0odWEB6BFrLWajvKDF5DxNarhp4UjJkzp5XXK1yLFxeqLuFYq/CqmSiUhVh9Rsj1jfqc1DBxdD/GPldZHds6UHNNpfxnpmCbuiLA04SjvI7t9WSSCyG9B8PThCRRabZ4ENS35WIdz+0UjFmpYG623s31TCyp9txZBW2juqT4ni4YbSTNzRW+T8rYjgvGMnJfUpg/5mjW8J8GuoyE1AY6jaTfIxb9Qt/gqsVYSWhZDWu73Eb1Oq5SPaaoyjGXPL117YJRfuIbLqNLUHu+ct/RJKInZt/q8jyLiSFqIDlBJCtq8okWYrW4ndE+GKFVw1FMClObpX1M3K3uivHXQglRq4lFBd8vFZE0iy9KAemh4LvL26SFoG1iz0y+CRKW6voeEBRlqNzXnUdlymodSWvmekb3tlFinZBWh79ZhGRFJrpoSS1B/CvtHCZJzlw93cpM1Of6VbuZBtlFsb7+rZ5uZr1a1KWVq1EdxjS3sVLSBGMgRGxtpbreUnUlzeUCaQk6eQUhE14IqR10Gkm/Qyz8efmJrWZiFmcxSRya+6TzlrR20bY/bQ5BEP7bV1o3CMMNUx29NHfGFHHheEMcy2va7lGdr/pY3pcISuVqjHWVVdRltOFcq6iU+pHXjh7nEI5mjUHTbQRCw89XHD31GkkJJyqau6q4ijHX0uo2xsWi6jLK+cgSQup8zLI7Mmu6GISCz/e8SPj1BLoo1F8nYZ2HGjYPXUU/KkDui55oPkXho+Ct1+5Vm5vWNciy/jGlUw4hpDL4G0WIi1p3v7EJrkrL72ScWyWOXu7kjf7eJciCmf1cK2HsIYCHIO6YlrZnJakFoL2mpTC+I/quCkbpMLq+bMj1kHkdxyz3xn7ShNQWOo2kaRHv/m+svmRF51lwrd2xy9KZpRpBJK9pc97k9pjbaBwbbZfPDUcvNBhL25RLy+nDzyQcdcHhcBMDJfyepR6lnKfhopouW9kxi4+pJova1oUGAiiUnEHbGjxbRxgVW2jYzJaWXUvk+kZznO065Tnr9yvXcEavUXmiJceuiACFyOlsS3ipbK+pa82ihwA9QbitJxDQa0AKi3h0rWssb/A9oCfwIqfR9zy0+V70OBAefK8tckX1LPV2FLz1ZSEZZYeHazwjt9Vbj6Joh+8VKRgJqQMUjaQpEPN/Un5S68416vkq6f0M5HcEPU8XUGoCjBZWVs4t52YTXto8LMIR0OMGnvYtI0Y4OjCe2767sIap5YRkGD3555wngSc6piSIzPCuGoqW9QLN0GmUYJKBtIQMVTgCerg6vb9y+R6AKOKshafVkLsqHuXcyvOIi2DX+kA1wSUQnuIQ6k5jWTjqArKY8itSKCXk+J4UiiISkVJA+lH5HR8F30cg2hJ7UwdGyL5HdEAIH0UxIHkyhJCKYHiakDRq0cHFee6MTqYtIaamYWGLQKwVFZ6vFuvR1A40psirR4u6eq6h87xipjlXc19JZXNc4WWgLBjTQtI2l7K8z36NpNfUVUOSEFIf6DSS1qdW7mIu8WN+eBmuo+o2qiV4zPC1eQxQ2h/obp5xCVvIWt+ZIkKt6y+N7HCbiFDd0pQuOL4XoOj4kLd1HcmK6TaqZXpsYV55PVvo2Sx+bc4xqWeydBsBaKFqMznGdQ8SX10z6IWlicJz6wXEY0XHgch9NLcnva7SRZRhaflc7pPbi4rjKPeF3/Xz+Z5MivGURBiBQsl1ltt8T6DN99ETCMVxDH9Yheh3Iv4a2ZxTJsAQUh/4m0WaAm/C1xo9heYii0Ct2BHMeFwl56+nK1tHXO6c7xVTS9xkxdYasFrMjGh1uy1hxjY2K6pAtO0Lv9v26Y/1Ujx98/1CSH+FTiNpasR7V0U9s8X7V8Pb5JTKTpR1naRNKNkSQtKIXc7X1zlW4jZG10c8McY2Rj6I9YVW10g67s22djHaZsYVlTF+6R7kvdZgfWqgrdGzF/aOJde41gUCmruoulU2py4N022Mrq24jeU5FXM7jub+yHU01/ZFDlvcWfS9HqX/dtHaeztyJo21imVnsbxNdRjj4+334CvrGaWzGMjvInQYQwcyKK1vBLR6QoEXuY3m622uy0wKsRNCqoNOI2ka6uY21jKxpuHFtmtA1kLkpC5U4zh6XpAS1na7oklrHd29yOX3uBq0JcPkIamDTNK+bOemg0lIPaDTSJoKb8LXIN7939KTkpPw/tXhc9+3l89R1ix6Y08Oj1l8XcJFElw8E7OoddbjtPWFcu2hpWyOWmZHbovcxgzn931AFJOdvTza0OYsavtFsnCOinkL3VmV8yjI9ZT2BAbpiMnnkYOWoXVgTPjI5ZVCL32jZiPbxprnSnMdtWLlyjli60kFrGscM92Lud8Qjr46z5KzKAngRw5k5IDCR4ACAtGm3UN0jJYxXX68XnEdy2sedQFpI3QYhZYlHV2r5DDK9YyybFAoHOPFytMy15McT0JIdVA0kuZDK5FTeuz77tI5yvZILGZxF5PEo/rh50oKyUok8KA8MIWjUaJGFWdZxaO6QQpIM1nGfG7DdZ9JiUGu1zvDz0E4QqsBfE0smuIsjWic2ZVE6dyinDw21hSQlYjHeKeSQswNNMfp6xTLY5NEpkoAXxHBBXjwIyEpBWQg2uB7yj0J+/2pIenwuVsw9gRBQnhaRGHnnqD8vCcA2nwPRQH4QoR3L3SRaJLUv9tsb0gIqS0MTxPSSOodImYIut9Tj9JCJjaRVhQCRYo3QloKOo2k+YklcthdRutz81ggHl41C1G7kkBc/ZZNXG6eTGCJQtVKONnlNnqePVQd6yZT+i7vVw1XZxWOSfcnP/xdoWlhuRfbPB0h9HIih192xES8WLV8Hqu5GHPvlAQUI9QsXb3IcVTK8qiuolnSJWuxca2/tFraxpPb7B1jTOQ9yTGma+nM+Fbn4vmaw+jBR7E0JhBtUX/nItrhiQC+Vwp0e7LcjW0tYzwRRm5XRWJQ2hFAwPc9tPsodX2R40VUUkeex7eUx5LjZUZ4bE2nNsXy3b+4ZBW2HTXE+hoRQiqDopGQVqZGGcykf1DwgaA2FYbqjkvEbzVsUANmQ0j/gKKRtA6qOLI5jOq+rFnQ5ri89RO1cjqBXi5HbQkIGPuCuNso5+5yEGMFwBFPkKk0XO154Vxcr53rtZfrKi0ERoFpNfnF5TJmn27RmjxjOolmy8G8BAkJOuq6vMh1VJJwVLfRVX5HdRnj7mppH9wqT5T6UnvwIZT7FLIUUSkRJqzp2FNa6yjL34ioRE7BE1qbwLBXtO5Chsd4MbfRdyxQlOcuPy6X49Gfe+V+1J5efzIIl0FGbuMWnYOdrwUhpHooGknzoYZoAT3caRtrzRhOOCZJMLrqNLrEVlJXFHV+MeEIXcjZ9pnCUb0vW8cVW4i4mpqJsSQaRTgC8Qxx8/7NhKYomcmPxKAQhV5v/RbLFM5RkzE6JkM2dyAKkbhRE05kHUelBKEWpjbD71qSjJYwU9SOs5XiESJA4PmaeAyvEZ9/UbTD93rQ5rchEGGWc/lejIxnLTFGfoVCspxo5AEFXQS2+TJ7OjyffNzul/e1+X70uCDz4NAD3+uBb7RSLHjlTHB2gSGk/vC3jJBmpFUSWBgaJ4SQloFOI6mY4O3Lteee7Ngw8Yz6XNDmvNn2RxOsNAEkY8ana5zcntSHOUpu8eNJK64wtTyn6Taq41RcNRPzCLlYEktUy8Xu5Hpe+RhraFotS+MrW4PIP2rz1kUJHEXRjoK3HgF8BKK9tL8bxdJjmcjheQF6gg60+d0AgJ6gI9ovx4bjivBQRCDao3BnIAbYxxqhbA8BAtEWOYgeAhRFe2LdQLN3tXQYzb7Rapg6XqYnvk26jOUQtSspCygg0BzHcB7lsHd4/iI8EUTh6gGFtlJSTJRhVboPgYIXoCjCuovxjjCqO2n2nNZdRukwqg6k6kS2+YEWki54661h+rLD2EcWYxLSh6FoJE2HN/40AIB476oGz4QQ0lfYaPCoRk+BkJaHopGkErz5Q/hb/mf4+O3L4W9+JoCys2gi/vHj2rmN0kGLreVTnDdbuZy8vabTwsHWxBMv2ZU052hzBc1OMebaRvX6SfdgS3TRXjfFnU1a3+jaHpu/4fS6Sh/J44zi7FFZGq8YJmkIH21ed7l7ScmNk05aAQEKXk90fJvXHZtiu78mOq90HMNj12vjAvjwvfVRoow8rxB+5GrK5BIhCmHv5shp69GcLt8rJnYf8R1t/VT30FWCR4iCtt7R1T7Qi/bHr+WhVErIC0qvc1C6Vjs8L0BRtIWlgEQ7fAQolsraFBHA89tQ8NuwvljuP93mC/QEnlbgW+1FDcRrNsoyOm2+h4IHpc80FFdRdxh9b32U8KK6jZ6nr+McNXCC+8UnhNQcikbS99AEjEMM2TKL1eOzXMNGnrqH0bks4WE1DK0JYUsyizYf3x6iziKWXWH9tOPM/VkFuRSL0THl40JBgFJtvvVRl5JwX9HIMg4yJ8vYQpeq2FKzpdXajGY2NaDXb1SPNzGFoZokoz5WQ9S2bGqglBRTygjWkmEs4WdVSKljfENcysC/UGo1hgKxXQmPh+FrTwQoChmqLqIoAnhRqFrtBqOGpOOt+9TQdPhdD1ObIeuCrye7SHGu1qr0S+I+qb82IaS+UDQSjeC17+lr1UqPgzd/WH789uVOl1Fiuo3iHz+OjZH7xfyfKBsrECeEEEIIqTsUjSQbikhME4xVYQvjqiFqORezcwqgu3lyn3repGtGjzMkwVTiNprXs3WCMV1SZ6g4wTE03Uw1RO1CTVxxYavP6Cv3YNuundOPlUQJhF/qABO6cZ4XwBfQwsPSiXOFZk3ylO8xa0Gqx0b1DBNK6ySVeLElx6hJMZrbCGiOo3Qbk+7Zt7iQviVJBAjL0kTz9XpQFG0lx7FcHLvoBfBFyYP11iMQ4Thf9JQ6xxSibj0DCj56Aj8Wknb3nZbfLXUXUdRK6fheDzyviILFabQlwRBCeheKRgIACF65JHxQQ0Focxet+10CiBBCCCFNA0UjCVHdqDRnqjexrdmzrfUzHUd1n4rLJcxaZid1uooDpL6GtiLbtoQU00WUpXkSC3hbSvpkTXYxXUarS1ii4Difdbv7/SM7wahOnfpY7dDioWgtRJ0XmwNp6xqjFvpOciLjrql+HrVcj0lR6WUtHTbNcRQA1ALgSnke6cCa6xnDZJ7kpK6wYYuPNi+A8PzQ6S39jH3RgwBtTsdRfS1M51F7jYx1q+pjs5uL3OZ76zUnUS2to3a9UUsMEUIaA0UjAQD4n/jv2Lbg9ct65+IusWcL15qhasAdrlZJEpJ1QgrISDy6knaisDviIfWsIWv3JLIluWgJK3IyltNV0A8gcIgtVYjYQsPhvuQkFBc2oaee27y2LRxtniNrRxj9HpOWBYQCUhVSKCXBBPBRUBJyCijXU9RPEZQSX4JSclXg+KdIeR8U2uABKCjJScLzURRF+KKn9LitlJzUA98QjfL1EqLgfJ21OSq1JGX2s9xmCsbwexFmONozOsHIZJ+e4DG0+bu5X2NCSE1pEjuJkBrRKp1UCOlDOMsBpRUfrwE9wWNYH8yt2/kJIWXoNJLmIYvjaAsvq099Y79amifzPErHZ+0oEx1mHy+CwAhVZwhRw9iexWFMGm8uOVDD0loNRd9w1GrjONocvHC74vJZwtCukLCtS4p5jCuZRXXH0hwzuT1wzN9FUihb2RHilXs5+6VSO+Gc9HBsrCuMWmpHdRnNXunR75V8X/cAfulPf+nn7vk+2rweCK8NgfBLoel2wOtGj+jQ3FaXM2veq94/2+YelsPtuttYjBxUDz3KydV7Cr8VUpxxQkhtoWgkhOSikhA16RuY7R0rOd58f9S1rqLyT5cQj5Sut1f9rlcH1hWfgu+tL69LLf0D4LUd0OipERKDopEkY0mKia3VS8HlwJloa/+ijUYZnfhB+n5zqDnFNMcub3g7rStMXlxrEJPWNLo6zahjfR9RX2i1J3TkMvqlJAcjscGxdi+rcLStdTOdRduaQfN4q7Ml4oLEtk4ysJ5XdxfDe3e7iVmcQ9VZsyWGxOYgy/KU1jGGFPVuMWr5IQvRekbpMgY94fsx7XfOdPWD8vui4PcAXhuE16O7jkBUkDzq3AP7z1hzSA03Mdymr1UslwtSXFOg/L7XXEbjd8H83sc+1UTpdy/8WSN8L/D/MtKk9LFfL9IbBK9cUhaKtlp8pW1ZxWD8AvFz2c7nyfZ3QHqSjNxma6OnXsvVKSYW8k7ORO011M4xSWMqLYRuCEa1bmJSQodNiIXHJCSIGMJLFXVp4tQWEvW8YjnEi3LWtS3cbBNvgYhnACeJvGLCW6Hgx6+RNL58nHz/hUIrEIWorqKaDCOJWgqW2v1FoenoS+jJMK4KAkXj9wjF8D3mFwDhA164pEImy0gBCS+8T199j1gqZtlaG5odazSRWFTma85d/adM+xtRmrOnLFvxfIieOdE/Q563jzavpeteBwAMH7B1fNINIvynpVDKWJcvZwDRM4duI2k6+P8MSadScVjLc9XSzSMhFZZVsjp3KGQujaOtmTQdPcV1sZa60Vr6JV+vkmxrF2kCMItABOJ9mbU55JhvVWQtdG9gticE4gkukZB1jPOTEmNsbmINf+9X9bwQPV68ZgHeX7W0ZueuhOXrXsPK9S8ljhHr7+ul2RCSDTqNJIY/6dxysW8btazjaBORhpMZC1vbQtY2lzHJdZTXcTmM4QQyPC5/qHm+n819rbY9oiitO8tSFN28lgxNqw6v4TK6QrumKHS5eIkhaUf42OZuynOZySiuZAv1fhJD3qVtUujpnU0q+6fG9zz0BOXuJxJ7l5RyX+ZiALTlfDt4Xql0jRqaBsphXZtb50Krf4pS55+e0u9P+b3ild5HMvFEGO+rMIwdF5DKCP166pzVucrfp6xOf+TCm7/HsNYP9RUH1OwZ3tv0iA60AeiB+kG8HoCPggfA74kvtyGkwVA0kmRcArEXC4DHso8rO0n1Yq0lqew1yeOK2dxEdV+mcLhLVJae24ppZ1lXmOT8xceWH8fFoYDveQhEeZ+rrZ4cI49JoxySrqHIqfj3IfyHxUx4sbmQ+jHq0xSXsVaIAAKPoCjaSmsyB/3/9t49XJKqvPf/rlXVvffM4MyIcjWAeI6ieAuCkjnEGBUYCRovqBGREG8cFY6AxET8eYkeA0SPx2hEPWoUjwlyvATvoBNAVDIiokTxMqIhYJSLEYeBmdm7u2qt3x/rUu9ataq6e0/v3b33fj/P0093V1VXr6qurvrWe60tctt9uzBXCOzql5grSsyXGr1SoWfvKJQGCqWgNFDaY+X5h+3X+rVX3vZbdDOBmcy0XJzNJaQQyKVAN+shF/PI5LwRhsNsRv8rEJ3NI206wywWLBqZJPIR5zXOU9v+xr4Ys3AcIn4yiHN0pHpOpxJH2kr1UJJustSFbrDgGFnsNhX33hPiJBhSYqct+YTiEiHoZ5LWSCLu9p55sJ9+1+7b/XSlc7vOlNXRzHNWwEwC/TLsa+zEVhGpslxW05TWyCXQKxVyaS78Znq4rLMy5lLYZc2VvEf8zabXsvYCs5tJKO2+QwTCL4/UZCwKqaB0yzYJ3Qx9v3/j2MbqAwkrHZ0ev25DK2Jd1CRWkBwPJIFKxNNS35OyGDbFLMaFyQeNe4T/RnycSxITKkWGXArkUqLUCkqbTJTKAm1eQ1XCsY1CKUghIYWGFBqF0v53z2TXbiuMs8D+rqVNBFK6YzoVwVp3E0ZUhpkkLBqZkZGH/WVy+h71r5YJ93FimWTm9ijZ1ubD9nNDxnYNIRhTbumaYKQCIs74HJYgQ1o31190r1sEI1Cvw1izAsYuaVKnzwlEJwL9Z3SGfdccEHyup9Z5V7OGRKkqt3D4XPjXZt1unDp4LhuteDp637xMZfFz351eaV34KfIagXDMhFnePOrrkGR+oYywhRKBi9plVVOxSGsbBohIVdRqNEbuYKDegjNFqULxGHyf/cq2Y3eIcI6hMqSbCP7DiRAMe5z7+NjoODcufvPoZDkKJdDNaNqyAkBvQsxUqYHP/PQulFonLY5f+Pl/+hsSKTQyodArYa3QZv0zeSgcAUBohdJ1woELBQCEKDjzgJkqWDQy48e3xRvhbDei1XLUsj/Rh2E/nJ42MA5ssGCcCGN0v6eTXcLCzvHyssUkEgtGAAnBGIpIs0xaLDYJvFgINlFZKYVfX7M7ubIUmYt/FZMYU0bu6ep12hVNl6mmZZCiqC07Ngb912ILd1P7y2Gs+YMEY9P3LxFNnWrC3zl98/HJbXf615m9Scj3wPNibtDi8ZibAs6kZqYFFo3M2HAubfXDvw56Wasf/vVgQZiyNNJp8fxhkmXMAvXvanWnNVysR4h9SwpZN55U15YmiyRdNhbiyU4yZFrKyhgQukRpAgyto0gTUZo6qJS6U7Msxhy0116t8791+z3oq7RoTIvI9HqGjVGMReIgt6MTBZXFMLYcEguiFN71nIl4WWedBIDKGkn3Z2xNpGJcEMtjrdxO48a2uI1TVkd641RGx5mUgCaxldSy37QPByWXtQnNmNSNkVJAliWWswleOrPHbXjD43p+C23CEozV3Zn/jKXRuZedmCsUgLCwZjgUe1yZpCh3s6GIpRGIrY1SKpTa1KssRQdCV51+pEDlpmaYKYBFI7M0NNRmDObvyV16rVVfJB7DhdOCa7GIxzCO7Ok2wTgGUoKxtowTkWO4opW6bnkE6i5sN62JYUVjnyhG1aRAKVbkATqwQrlpVAC6cTixmLIyxvOzBhEyEdyxlDqm4v9p2/6Oxeow/7Ex/g9HOS6N4K+2JRP1EAh3c7DQ5KnGZSCRoQpLcGiEIpatjcw0wKKRGTvUykjfqx+8zUxQZd0nN0xMY9OyTVZHIH1RGybucYgLQ7IYeRuDrIyj9pp28VxtgjvuAEOKefvVRFZGjQzr8kcDMLXkgCpW8f4zDxk8rgVwzIEb8KV/+88gWxUwFkClyEO3i70yMS2LjzWy3DACQAqBTApIG7so7WsAkFIgs5mxhXIuSpNUIYX2FkcpgExom0ULAMILYVd6J1EhJohlDMvFKIB2gjE7pL6CwMoXxf7G86UMBaP/XCQeaVHKNtd00/S22MWmc0Dbfyv+D8nKyqh0B0rnto5oeh1SFMhkF7l2MY3mf5UDyISy1mGJXqm8C5oeo8HwtbYWRW2Tr6S3LofHmrE2CigTz6gUpFS+WLrWyhf8zlxCElsbmSmARSOzdNALgkJ0IUhYIptc02201Ep0dRQXWr5nJJHYZF1MtvCLPtNmRfT7JLGcWza1DgDIcjjB6BJglO40CkYAWN89rHkbx8yJD3kg/u/3f4l+oVBYMw8Vi0pplPa9Y9jklYXixKETjXkm7XN9ep5LdKx4zKUmQlJ4Aen0ay6dZbUq01NG2t+03StNwgZKX58RQLoTjI6mUeL9ROMUHfTYGpZhk1cGicOUoG0aW3xz5UIw/PuwQLxzTWtNyjtpacQ3qnAUkeWQft3m+1wWNLX4mQQmWcvId8+FUnZ+9bnqBqLabikkRNYFFCCkgtRmLAIKEPBljWILJMNMEhaNzOSgFrIgayCKtxrFdd2yrBN9Q2U6R58ZO0tU47LJbT0Ol/Ji4ARjk1h07x0pa6OU5nKbQiasjq3EWse6MJV0FkJtvs+NTxgrkxOD8OMIazjWvmbImo12TaNtw6ik/kPxzcgoZXxS6/fzh3f1DsQf53t2bLvYVPMacCEJ7pnW2GxOyEqFJMTLhO+dwJXJkEl2UTPTAYtGZukoCn8xkkf8VTBL/etb4U/2KfHYlhCTEpl0/hCMVRwOY2UMpjdYGMMBhssoRa6Ndh8k/ZsycNlpSJQ6r3VmKdEJYhgnxa65AvO9EoUrrqw0+qWquadTYlFZAefwLuSEGBtWPLrlOt7CKNHJJYqyclUrrdGx+14pjTwnLk7pYh7hEyTcmGisJh2jFGUgDAVUVFewxTU9jJWRTm8Sqk44plzLw1QYoGMaaix02dRx3DBOSf5b9r07xpXu+GdvcYzWLYL9WqAjJTKZkzFUFkaXyOKy6X0Znii72t0sFH6TFEmWou81CiUhZG5c6LpvXNICkL7aQAa4THp2UTNTAItGZmkZRpzRs7H7TJPVsW1e2/ctlaVv0HeP6kZtS3hpmyecO7o+P1VCZxJctPXfraVReYFYKo2iUN7C6MRiY/Y0yV6QdqGUkAyWa/kNnBDtQ6EDiQKqWp/VhkoJlEJDSuNIdOOrkncq6yMtwdOUgdtGsvOKE2JUeHkROcCSF7TmbBGRwWda/sOtpXTIWMaZeFaL2U19deWarn1cKEiUULqywDsh6MRdZX1s3p8uAz9LWhjdcUtLPEUxupBD/RN1saUaO1sdmSWGRSOzZMgj39o8M2UdDG7lRxCO8XoGfV9ysAsQUm1Z0nHPZxeLlVoupsnaQ62NInFBdLFexMroyuv4rizWmuGsjPfrPGLozR03Z2x6MM7fsg3z/dILx6LUUKUywpGKxqbq3gAk6c+W26rZKeFolm3/nb0+lAKFjVtUSqPbMfu746tyO+ui+2LjZnRJETTxpXq0C0eX/FIVoiYWyDh2cdjM5MYbjlRWhxounjheps2aOFQd1ESizbCCFvBldjRJhGnK8heiNPGNLuEE1v2fmZI4sgQAiUKVtcLtTZnUpf9djbXRxa+azkTaflYjl9oL1aDlZXRYKC392Bhm0rBoZCaKuv4NdTFYKw4eBqcPJCUgh/2MH1g8hpChur3Q94OC99vGkMK7JWHc0vHFyyXZkMQA76qLajEa15hc0qSXJu65bx69XulFYtlXKAqT/KGU9mJRKQ2diG2UUkC4TOesynSWZN8K57bORKOYpO5vt45uNwtiKusu7ko4SimgfMybszQCVA00CUeBSiD6JBgoZKLw6/euadcViIpIpdLWx/h98gYlKlU1jIuZfl/Td8XTRq3F2Aa9GfOJXjlKGMFYRsletY/b/QwYoe5EJACIrAulhW8d6doMDsq6j4Vj1fayajGYK1MDslASUnSQ6R60Hcuwfb25LzWz1LBoZCZPkxWRikgp25NlmtY3yhia1jeINgtIXBi5bf6wpJISWtdTZUv7VaDKIgWmx0WtNFAUCkVfQSuNoihR9Kv4RgDQ1OLoMlitmDRCUEJLVz7FrlcZ4Sml8E5AZT9HLZPBWFQlUPPc9ptWGq6zolIaSjYkQiiNUmrkkSAcVLePFvZ2wtFlUXtSVsaUYNwTYrf1MMsOtd7FtZiFpaTC103HeLhvAQhAwt6oaNObOm4LCTQnNaVwNwfUypxKhIm3IRhbAywcmaWERSMzWYbpAhMLR6Ae79iWDEOn7yFDWxjbXsddWuJgfqD54tpWPy+FrC5Ezsrokl4AeNfdxu5D29ezRLzjOY8J3v/p333Ti8R/POcPAAAnv/NrUGUU40isf3leCUGlKqujQ6nSi0cRWRd9zGPkBlfSuMlp5xFXt7GJOLYNaBYaphakee3c0oFrmnaAiRNg2ix68ev4GBt0/AxrQRxmmWEs/zT5RkSv3TpoSEHi/+c6wADwbmnaK736aCXIfNcdoSorvO3OY3pTm7hGV1KJZlMrEssYdxZy8YxuuUowuvfmQW/essijwu5pZpqYDvMCs3rxRc5U+JyaFszT9c/Gr4PvUdWjdTzN8xckGB1xTUY6vYlhhO4QF3BquVDEmlF1e0knCEwDZWHc04r8LkWfZFPbh7YPP62spvv3ZSgylTLWzLb4yIWSys6OBSbtZ+2gxbzrRMevq83oZyesjINa9LW1IIzrPo6yLB3TMP+7ePnkWBtc7kBrWam2JJjaaoIi6sr/HtTSSFtGxvOaoO0vg+QX8jrVdWlYdP8rC/4sw4wCi0Zm8qSEY5NgjC9A9LNNy9S+b8gLWRAH1yAY48zN1IMKxqZe0ONqAdiQSeoSA3zSi32s7x62aF1exoGzLn7i3D/00z71uqfUxCKFuq6bWgS6OEchBfKOJLGPtlh3bpJeujOZeXTto5Ohk4fLu4LfUtpi365rjKgERSgw4ocxnvleyK4MDIlnlCIh3prK7Awr8FLTRhWHdFn6v3KPpuUHCdK2/2Z8fJPjXEVlo5xYbHPzStS/qxKLZSQcw0SY2u8ohH8E3xHUfQyhWdtmzKTYPimNVa2ML9vM5GD3NDNZXO1GBftMWgzWXNOq4YTp3Lyi7toOFhvBqidlKBQHZTo3xS7GYpFOS7mlBxH3BB6i3AjFZJSa5IDlAhWMDm9FpKVzssjVTN671zQxJrNiMbci0Cxn9iG9uAcdXzLphSMAPz3PBDq59AIyI0LCtRI07QWNi9O97mYSnUxAojBWLlEgE31kom9fF5CiD4EidEU7K6MqwljGlOBr+h8sJL6wScwNcpGPSqqIeFx9ILDep2N2RyXVT92I9sy2gBTWtSxsnLAicYqVy5mSumFIfrcNIYHom+AE3YHygraPTEibW5Pe17p3OUT3hAVtN8MMC4tGZvLUSug0lNoZ9Pk4UWbQ55rmt1kV/bQGoZYSgik39qjWglTSS3ARbfCPUStMFOe1XHn22/55j9zKzsIY9JDObI/gKJua9pruWIHohadwgjOyMAZWxlAwZAnrVGVVJBbG2MoI1K16weumwpUJgbEniWIxo4rFeJxjavfoV58sq6MA2zYw5aY29RHbBa6r1xi/r2o30me7XtIVpkkoOne1EYwZpCisVyCDFkbAClIui9sJMpOGRSMzUeQT3wEAUN94LZnogt51aD1sXIkcTjg2XSyDhr/mtYjFWJNLuSYwEyKurbTOMFbGPXRdU5edq9O498yD92idk0ZIEcgDX0YncDNLZHllTTTzQwtj3smMNTCXXvS59VAh6CyIzpqY55UYoBZG6S2J0lsTY3emm55LYayM1rLoSu1I+9r3noYCSmtRpHF9TW5pYPgYwjb2VCgOk1Ud95ymtRyd92EQ0TI0NtDVYZSoElxSqIRL21jlQ5HpLMdOELrf1PShrgvH2C1NQxbo9BhXIkiLDCD9sQFrbZSo/z6LnJnOMACLRmZaaLzIuZP5KCfEBnd160ei+MWmmMVBInGQBTI1b9C4FiIAEpYNjWyixbvHxWVvOBbPu/Cq2vSqNqN1EecSMhPodnNkHetOtrGK/mHbAjqrYW7d01kQqyiQZ6I2zX1nJkLLIhWLObE6xm7pXBq3dC7mIW2ruFz0vEvauaehnQu6NOIRCOMabTmhIM6REosJMeIxNUwmPzA4CacNIcnniTU9daPn44WrkI9UUtegBJhUvCMVjJRMAnngkjbPUrj7VIlC0eLtdSujEZyyZoX2322FIoQVrEIG7QQVKUBuViiBMrxx0HNfhJh9euM2M8yewqKRmQ5SsYgpC2JjAXC0xz42zYuWE7G4S7qCW1zPbXUZ21r8pS7sTWVTRsRbLfYgO3PaSGYnJwRjnhvLorM0pgRjbuMUMyl8p5cmoRiLRCC2HNVFo3NJx5bHTAJSFL7bC7UsVrGMJKEkTnwZtoj3QlmIWFzo98blf2ipHVdmZ0AIBq1FOsqxHgvLWn9qoSC0sSRWgk+T3137eX4NQtSqgw1yVfvvjjvCsIuamSJYNDJTgXzyu6CuPse+iawMTcLR0eR2pq7qUUi1A4wzoOP5dLl4emrZpunsYhqKvFO3ILluMLl3P2deMMaisdvJgqSWPJPodk2iC1AluDh3c5g1m86Epcs4cdiR4ecq66OxMsqggLetz+jc00JVVsZUQW/3HLukp0kwDmvRdPUZncVxxFjHVE/1YH6iTuOoUJFYZUtrZEKgrzRyKVAEm6v95+jnzefav0tBQtq4xuaF4tCE8ZeOYpgYFo3MdJG6yDQJx+T8FmtjE02dWppK5tBl6HNbNnRsnWw6wccJL3ssAIj1ZZkmv7ziI9+2tRqr5JcsD7elSmhxySkyEIzdrhEMTgzOdDLkmcSMLaOTZwIzncwv5+ISqQCM6/HRws7UehRbF9006q7OpQqypY3FsYQURSAcvZWxLBOJMOQYGkUwNi3TdrwNilkctlwOXZ7+J9z/NZ7e9H10zHQR1Du/pKyOcXZ0anrwNSbAEgC1NMY3ENrGO7rTlIjc1HFyVLvVcUGMI5aVYVpg0chMDfLJ7wreq2vObXdV+wVbBOOQmdi1OozJhUQk/hrEYlI0xtbJxMViTywFcaHniGlpE7gQPvCSJ+AVH/m2qbsoda2cDkATYGRkbTSC0cUqOsHY7WRGOOYSMx3p33fdcjbukIrGLBKMAJI9iGOrZJwA08kEBEqS/ELd01UfZLgOMElLIymvMy4L42IIxtZMajJPyPYbvZSYbCi3A1TiMY51TInCtpspKUpfRzEjpx5qNQSAjgRMt8uw13gcuhC7quPXyU1HnAzTAAtGZglg0chMLfJJ7wzeBxnWqQSZWDi6acDwrmonDGMrI53u1lsrMkxVxRDxjE3uPK2HszL6DFOyfioqIkod/t1/ds9u7OqX2NUvsbOvMFeUOPEhD2z/zgkxsyYPu7lEPaODYtskIzrPpBeHAPz7bldiTTdHt5thJpOYzSW6mcQau1w3k1WySuSWpn2DaWs4977ujqTC0VgRXfJLLuf9ayEUMvRhsqkLoOiZOoxF3zyXxWCx2HbMjJKA1SggB4jFPa3X6A16EmHyW/vYg+4vvoC9eS51J5gfk+6+Y+dBAciMVVgX6GTVf8j8ruazzi2tNFDSZlWJuMa47FL4XakxJAqTx/Gtbd1yGGaMsGhklg/Jwt0ydFfXLI0J68WwruuUYKRWxVgsDirWPeiirYngbbM60iSBBfKT3+4CABRKY77UKJRCrxzPBefSH9+BFzxi/6GX/7/f/yXm+yXm5kvM90r0+iX6dixvfprJ9u7O5FClCoRjraaiswySEjgubnGGuKe7HSMc18zk6FrBOJtLrMkzdDNzIe9mEjO5izs0sYcOpTMoK8BdckK/DMVj7IKsOr4Yd7QQyrql+0FdxlrGNHVLa23Eo9kBY0uUCkhZ9Ab1n25s+9ciIOMi9UE4xpDHdcM2NyXB0Ok0ocT1mKa491rLwNpofkMZxDYCsBZpQGkBqbW1OpplzHyzXBbcRMB/1rePhGoVsa2kCrszzJhh0cgsP1LFwN0ZeE9EIiV2Q9diG4cQjINEXWwdHEsMY0y1vo3dh1ZTiSVEaY1CafQbWu6NSiqzuY1uJ4NSGkWmoXIdWO0ceSaghAQdYhBf6CyNtnROx4pGGrfo1uNiF401UXjB6MQjAMxkJXI5bwVj3xd/dgkVSue+ILPSRnwWKh6fEYtAKBjdOqvEl8IIRps9bb4oEoS1Yt4LcEm3xQvSdY1kGRzSpd30PiUclaqsjXsQ8kdd1E4wBu36RsxEFkJB68pNTTOmTeHvqk5jR7rjt9qAjFgbHZUFO+oiQ48FOgZEv72/mbCic6/nDL09DLMQWDQyy4fWmB3rzorrGtY6zbQIyNgFTa2M3uooQ6FYE5GpeMaWOK3GTbEWl6Fiwtxyw2eHFnYfzZfGwjhXKOza3R/68ykuvvE/kGcSa2ZyfOnf/nMoV/eWW+/G/WZyaxEssXu+QD4vMd83F8y3X30zikJh3Zqq7WGptC+87aCisSrALb1IdO7pjnU7U+vi2o4RjDPZHLrZfWY5uRsdOWddx9V+UbqDUuco9Yx3fSqdo9Az6MgcSmfJJAufJU2EYyb6yGTPuqRNIkwmCgidcEu7Go2KxLa1WaOb4uRGvSlpq70YWRjF77xquFXe+u5oSuKmScGU2aFCWShACfM8AOXd0a7ner1QNxBa+ZoQpB6jW7aTGeuyS3Sq12msrI7h91XZ9SbRSvjSS1KUVWcgUVkeJapuQaDJUfFNBFsZmSWARSOzfGjqK91WfqdpuZj4IptKbnGCMemibrEwJssBDbD60AspLXbclvk6gN/O/xvmy/thV3E/bxErlLUylsq7hBeKjym0j6t/8VussbGCj9v3fn65m36z01s313ayKAO1WhcA9PqlT2JRxIzXSWRPVwW6K+EIAGu69QQXF7+4tpNhbQfoynvRkbsxk90LIRQ6Yjc6cjdQzFVCTUgg7wIyR0+t832KSz0DqQoUugulO1FHElW5Hq0odJZLKQovGJ0wFShI9xdlvpsKxlRMYTJeVrsBDPzdkgzrkk7NG2b1SlXJZ6mi3oNXgFFuklKCMVhdwkUNVNZF+t4ZBZ1wtHOQSxfbWNVtpBb9MCGmclE7QWgszlWtTpoYZTLrE+EINMaVRSOzBLBoZJYfTS5oF9/YtlwTw9aGG+SGTrUKbFuPahCEUpp4Nvd6wZmR4TiMxUUHrl+lbXLJHl5zfO/loDOK9NYYhylLIqC0QkcKFFZkKi2R5xqd0o5RwcYmhgJGKe0FYRzXSAVjnktkouq+Yr7bvO7Ianom5pFJ88jFvF1uHih7QNmvurC43ykHMjEPLSSE7kAjQyaqTF0FYxUVkYtRggrIeuyaHCWWLRXPuAcxruG6BwhGAOJBrzCT/+N9Q1sYq1Wp4LmxcoFWgFh4bcXYJd1UZofi4xwTcZVSlCijeMnK2l1lS8fvTXJUtTwtvSOFCBJdXBa9eR3t8zibnmEmAItGZvnQZGl004DKBU2nBZ8nbuwYrdMxVLQPdZM7ulZ+Z0gLT0o8AvaCKeJQp8HjbSpADpAYPASWRqU1ilKhKBQuvPKnuHdXD3/9jEcNN34A77/uVqxbk5sOK1aIdTOJGRsz6Kx8jrUdM5a8CHvwOtFELYrzsq79jUsvUXKHxDPS/s65NOMAEIhF46Luo5vdhxm5E125EzPZvXbHzAG93eZR9MwAZA6UHUCVyLLC7OusC6n76GMNhFYQagaKCBLqZqRldZyV0bzuQzqLpBMELgGGuh4HlFUKGJeFcU8Kdg/7lc7qqMl/199ItdzMDVGiKiUYUyQFWvUGIIkwsNZBraUXvIWSNhGmck27m7O4pE5Q5FvCHgOxdbG0FsiSuKbdRkUWXxaSzBIy8q3pL3/5S7zoRS/CAx7wAKxZswaPfvSj8Z3vfMfP11rjTW96Ew444ACsWbMGxx57LG6++eZgHXfffTdOOeUUrF+/Hhs3bsRLX/pS3HfffXu+NczqoOmilZquVPVITR8HgwQjLeETtxp0NPa0HsGlnqhjp23ihk648lIJJwBqF7lBUMHmLoZxB5RgWN4dV1n+aB3DGWcptCJ0pmOeO7ZcTofM73ZccW6ZFIwu2aUjhS/YXU3XyMW8dRkXyOQ8TNZyYSyMiriJy+i1cu5ik+2cWddilehSeHejSXohdRipqCRZs+bHGHBMNh0/42AIwSgOON1bGYHh4xgp8tBzgof5qgW4u8ddGHsInLiLMXGJ9eLvgx7uv5CySteJzlncAYaZACNZGn/729/imGOOwZOf/GRcfvnl2GeffXDzzTfj/ve/v1/m7W9/O97znvfgYx/7GA499FC88Y1vxObNm/GjH/0Is7OzAIBTTjkFt99+O7Zs2YJ+v48Xv/jFOP3003HJJZeMd+uYlQVNZBkmKQZoiCfU1e1SXM+RZnA6Cxl9TbM96cVbkgSZJsFHA/19yRFU06SMStM5M1sOX9xX0c/KygKWZTbmziaMyBzIuih1jkJ30Vez6Ks1KHUXvVKhUAqlNgkxzj1tvlJgppvhLVf82Je7edtXf+JL2NB+zXluStps2KuLNZ3Mi7G1nQxrcolZm5HckQVu3/UbHLD2AQBMkomGhBQddLMcuczRzUwyTjdTmLWxhgB8cgHFuLJDC06tgDaxMFIXuZlXoCN32mSX3ejKnehmOyH69wH9ebNv+/NAfy50T5d9oJ+ZuMbOjJmWdSE6M+h2CmRiHqWeQanzpEgHQLKkK6FQuaWj8AT31t9sBAdHcv2ehQqKUTu7jANrSvYWx5QWXKAVjYqyheKsi87q75NihArqPwop7XHtrIz204kyTJ2sKudUJUYV5Jgwca4ZeQ6LvOu6lZGLezNLgNB6+LPL6173Olx77bX4xje+kZyvtcaBBx6Ic889F3/+538OALjnnnuw33774eKLL8YLXvAC/PjHP8bhhx+O66+/HkcddRQA4IorrsAf/dEf4T/+4z9w4IEHDhzHjh07sGHDBtxzzz1Yv379sMNnljHqcmvRkDZuUUaCLX4A4XK1Zey8PPfThBN+MreuxxyQmXkW0rwOsqhlJdxi13UsKBs3jLiV6AXBWbZUgaBuY3zxFNIIRpkbMZNZ0ZjlKDGLQq1BX69Br1yHuXI9dhczuK9X4t6eEUL39Uxx73t39bB73mQvF6QeoosZdGJRCuF7NLsuKrNWIDrB5hJMjDWvR4pXhyVElMs8VjPoqxyF0pgrSp+cAwB9pRstoXGHlthi6bqvZKKHzCaaZKLnC2rnVjTm2FW5oXu7zQr7cyZ7ueyFSSV0P0tpnjuzRqxnXS/UFSkonSJIeBDKJMAAxIpZVsW9y5IcB+RYAerHxTBWyCYBFpf5afiMOOjMwd8xAurntoh//B90/zug+h9mHfvcNce93eeF7gIASjWDQs+gr9ZA6dxntzdnT1eWQxpKEGx6ojA4XV9YWNw82nLKMomEYOwjk/NB+ILL3DdisgiPDXcjE50jxP1PHmHPM0zFsLpqJD/H5z//eRx11FF43vOeh3333RdHHHEEPvShD/n5t9xyC+644w4ce+yxftqGDRtw9NFHY+vWrQCArVu3YuPGjV4wAsCxxx4LKSWuu+665PfOz89jx44dwYNhGtnTO+74gjnK+toyp5tci23TAlEqwmVp+Z8G17SyNepSbQSdBa8koozGCtKkFlfiJrfC0Ze0IUJNCtez2U2ryoc492zmeisTC5DpjBK6q6nFMPWYyaS1JFYPZ+lMCUbnLnYFtZ1lJxPuYqwqd7TrvGKzlbVSxgp28KshfudVEPu/DGKf0yAecCrExhdArHsWxMyJVvAXkKLqHZ2ycg16n2SYmp/jEoxtn1mEuDn5X86F/C/njjamAaRqHNa+d4hlwnWmx9Pkro5Cef20VAFvL1idBTruAtMUt8hxjMwSM5J7+t/+7d/w/ve/H695zWvw+te/Htdffz1e/epXo9vt4rTTTsMdd9wBANhvv/2Cz+23335+3h133IF99903HESeY++99/bLxFxwwQV4y1veMspQmRWGPOF9AJzFMeF+Tl5gyHJN84h7OnCP+ZM0EWptVp2a5ZFeMaJgfFobLnMXAhm6m5wY9BcK0gnEZZRSq6ezwuTW4qK7xuqi1qCv1qBQa1DoWfRsXUZnyfOuMymQ5wJKGTe067jiM6KlqPVopq33Zp0VMpOYzTUyMY+O3F2zoNDsVNrirVAz6MocZe4sQ849Xe1H6pKmRbPds6t152IJTXHuvo9ZBGBjGOeRiZ6x5M3Pm6SX/rx5FD1rvSmhez3Ih752+PrSc/cad3U2hyzrIpMSEFXnGJXoVJIso+Lwvy1MfUIgzOTWCsHxnUoacckzceH41P8lVdw7tmguJkqZYjVZQ8Z0KvlMykaLruuyIyAB7dzKZt2jCEaByg3txV6tK2kJhaxmlTT3e2EMa1PNTlp6ibqlhe6RmFodxtf6ZKkRkqQYZg8YSTQqpXDUUUfh/PPPBwAcccQRuOmmm/CBD3wAp5122qIMEADOO+88vOY1r/Hvd+zYgYMOOmjRvo9ZBvhAt8SJMtUtJq7XqJRxebnprgwIACEioeiFnPtcbNUT4bqFBDXipwWDtG5JwNdidBpXSGPlygBvcJD2ryqItcGL1NxbIbX9SyvdQaFnqoeaQd+2C6T9kqveuJUlUSkNZPAlbAD4LiqucwoVi7N5RlruzXv3rylh04OrSxhbV5wFVOkOOnJ35dYlllEduQCDJJKoPIlLRKHZyVVsWM98qLQ9ncvSiMWib973TYkd3e+b37gogN6Ixc57u4GsMMK9LKuwAWHcrpk9LuqlX1JiUVW/Lb1p8DtPhR/T9nhuEg46PM5r05teW7FIE1UWI/1EbfubMLSExg4PgY5czxIK2lq0tY1JdC0BKbFrugl63GnIoF6jIyMxjgp1cVoVeieF3IPkKRu7CNTd0vZGJghbAVgwMkvOSKLxgAMOwOGHHx5Me8QjHoHPfOYzAID99zf9Zu+8804ccMABfpk777wTv/u7v+uXueuuu4J1FEWBu+++238+ZmZmBjMzM6MMlVmheIvjVwbEVQXleSKzgBN+NCGmaR2xj2lEYitISvzYgZqrsURVfkfbcaYCpAZkYGsiTpzVw5UDKUmP5BQujlHKyl0tpUBGaszRcjZSmBgtVzqEun9dq7w4a9juBEgNaHsBllCA6EOhA1ea0RnYnLtOQkFB1tYZl7MRKL1b3CcRAN7lHMQIqtJnBAsYASMfcV7j/mlEKbtBzgpErHvWmDxS5nPTb59isTKqlwh52F9C3fwO86ap9NUeQi2GbcsMvb6o8Df9jpRYdJ8BQG523HGqqmk0rIFaf5t6fDtYODJLwEii8ZhjjsG2bduCaT/96U9xyCGHAAAOPfRQ7L///rjyyiu9SNyxYweuu+46vPKVrwQAbNq0Cdu3b8cNN9yAI488EgBw1VVXQSmFo48+ek+3h1mhqC+cDvmMDyZmNGRU12o0khpwdJnI0uinB8kp1lIprGvY9caNrSH+NSn0rKl4I9YQAZRa+kQIO4kIR7e+BotLHPNoLVqlNn/pwmbxFmoGpe7YRBPl6zKasYVJJjSeMbMu6W4ng7RxhKbdXoZ1NvnFJLv0TDIJSXbJRZX8Qq0n6VABmzigc1saqDkGs/pEaF00r6OkEneRdVZFZ5kpepXFprRWxjKyKO7a3fjdTejb3mOSMlQBKJsoo2zChotJ1TmQASKyRIcbZ4Wi++2z3IxV5vDZ01pX1shYTAzqHBQMOmVZbLAwkv+HuvkdkA997eD1L4TYku+2KS5rlSqyb4mtgEKUCOosppZHWjDS2Ej3/63VcETkwk6UVHLrqm5sqq5AQqhaZyBzo0OSX3zdziL6zclNCmdPM0vASLen55xzDr71rW/h/PPPx89+9jNccskl+OAHP4gzzjgDgHHrnX322Xjb296Gz3/+8/jBD36AP/3TP8WBBx6IZz3rWQCMZfJpT3saXv7yl+Pb3/42rr32Wpx55pl4wQteMFTmNMOMRFs9xmGD/4PpA2K7yEWMuqRj9xl9r3Tkvh6mRiNddkC9upR1pc3S6HDxjP41KUqcS1EF9fuLX+mti2HrM/vQiUdUp84lCdCEGfoI1u8+0yQYnVXRZ5gW4UXWPsQhZ4XbfcRfDd7vtZ3s1utKoZD4V/q++gXq6xj2d2/6vZs+t0yskCML0YbtqrX9S7weFzTRKai5iOiGpsHyaN5XVnEA1X+GZssDbElkpoKRLI2Pf/zjcdlll+G8887DW9/6Vhx66KH427/9W5xyyil+mb/4i7/Azp07cfrpp2P79u34/d//fVxxxRW+RiMA/OM//iPOPPNMPPWpT4WUEieddBLe8573jG+rmJWHUoG1UW5+r5n8lTObrY01EokxKkqIAaqEGHfBd67isjCWH5e04iw92ln7qoQXZ/Fz1jPzOnZlhZYPDenjnHydPiGNy5O6KVPiwsYzKm1K7igbH2ieTTkbV5+R1j407fqqZBhaYsclvEgBa2GU2Kub2zqMO319w47YbdrwubFTC4kTUZQ4kUhKEwEms/p2xVCrGhViNPuZCjXlxmIv2nZcuugDRTE2i5m+7z5gdhZCFYHFUTzg1HC53uXwiUveikyOy9i6rMtwf2R5tf1KmGOPWhxpDU+zY+yzrJ6aSusMsjKmrPJjxmVR69veA58g5ghKWomBYliI0sQxQpkwB10Jx/hGqibkothHEzpBrK3R5+Ni3LH10gtCElZBrY2VRV5V5xr6/4kz+xvc1vrOvzfft99LW/cNRf/yA7XjYNxllZiVw0h1GqcFrtO4+lCfe5l5IWXgplaXv4q4rBrqMjriGo3ukefJaYIkMtRqNrpC2q6enKsfJ3Jb3Fkm3a0uK5jG6MWt5mp12bSq+lA7N6vfptzXq9PZLHrlOgBAT63DvFqHXrkX5stZzBUKu/oldhcl5gqTQQ0AvVJhvlC29zTNpJY+6UUK4QXj/WYyzGb3YE22vSqKXeyyHVSceClIHbkhTy8iqr2ZQoWiJihBkmq3R8aj3f4rCvsojWhciFUxNbQb3gR0u0C3A3RNwW/kXYj9XxYsp3d93hw37pgKXNWREPDuyKiQM912mgjRFPdGxWBqfyWWaxSM7rVSC4v7HBJ967vJf0qa/54rqi5zUhczR6m7wc1SiY6t0dgc8kAt/anyPE0isI3YFe3WE/6/VVDgPZnw4h4urKLptwYSx0X1f4uPPb/tt3+wfpxEz+LgVw/cXmZlMayu4t7TzPIglbU8zHLDfq5p2WGzOCPXUeyObv2olqO5zmJL3SISt0arXMkkEYWKnNQFrM2tRrPUh7FgxYIxsDwmBCN1GQNVuMI420jG67Xjabpoj4qYfbp/rXd+NtyfUkKsf37jZ/VdHx3LGJaaOGRgKbdjIYIxXL4SjK3Ltc1P3WzFgnGxWH52JGYJYdHILH+CbGgxhBiI3NRFYayN9HVR2JpxIOJDVEkwwMATOLVwOAujd1FbIeY/bd1oZmTKlGeR0rgfVdloETDPJD7Sl/yoLJ1Kh6V2ANRa8wV7xya+dDOB2VwiE8DaTmatjL/F2vxurM3vNm33du0M6xsOKv/RGHcnwotV2zoaBKqOhZt7XZTVNGppVArq6nMgn/yu5u8alrn5QDjq2dl0ArAqTEiEcxNn0bEYb/ewxeCboIkxwmZZafd/IctF3yts3dLBIR+A+uFfQz7y/xt+THtC7bhoT5hybmmXqe9pKtSdmD7IdU2/j66DWhbd/MA1TWNwnVcBgK/FSJNe3DkgFefYcHOmb48SB1NhIokEKK3UopRVYlYGLBqZ5c0wlsRRrI17OpYWA2Mc07hgJhAQL4UgiSexdU+FFy+gfoGi9feAuvAZxiqZLEhN4u9SgrEtDm+c1kalQiXesl5nOdTFloGrFd0TwvfrnmU+e98/mff3e2775/dpr5+r/+N91bKRS5IKB18OJ8GSCcYRGKa8Tu0zw7ighywKPlKvayoEmyyM44aTapgFwqKRWT7YC7H6wunVtJolRA5vbVQlIJW3LAKoXlNrY/xRLau4RiGNVcBntFbf60SiRtaY0akDKyEAnZsAfkjzvbF1IcjGLU1HGSHNdqCydrhnraWvz0hL7OTW56y0QCeT6JNxS1t/0RXwlsKU25nJ7sGa7B6sze4Gdv0W2HUPMHcvdG++LsBSsaQwFqwmUuVdWjPfi6ISakWRXtb9rkUZLketjZ97GeQzP9w4rmGQT3on1NXn+HU3CSmx13Oq1/lx0OrK0Bo4JHQ9e4L4nVcNtRxNGPKFuCdBrV2is+6V0DozljxdwnVdkhqBtdGvZkB5Hcqw7mraHpDGLbaWhUoV7gYQlNmhfaabQj+SN1QqeWzR39wkHEUxrFy6h2mBRSOzLNBKQ7jgOmo5pC40LyBJYkGqzaBbVtokhAb3NPK8WjbITi2rOo1lYadVblkpFJTN1HRiMe32arZaCFpyIw6OD+L5uoAsAN2p9bStrIJZIBaNFz8Uj1JI9ImlzPVxns0z5FJgJpvDTLYDM9kOoHefaZm3+x7o324H5uYaRWKcfNRoM/EXLR29V9V6KF78RQkucfITXdatzybBeFdyoVBccipQauSn/kPTCAeza7dd72zrYnr7pRAbX0C2r+GCP61MSjACRDhVN1tSKFPz1NZjNAXgTXUC55ZWIvy/DRKCbfUcU6Rc0OYzlVA0y8UloVQ64UURwdgWI5xKfKLvBx1HNKzDrY9FI9PCBP/9DDOlRCdNnco0bWKxLvYjrnchNemyRP0/OWxwU3yhqWXbtiS6jHqRGmX5JbwAyhM/YJ6f2OzKBVAJxiaGveBPkEUr7t2A2PfFi7fuodzSg5epC9GysdB3I4t8vHIpHWZPYUsjM/WUl54GZMJ6mBIWKPo6sIKQJAOlvQs3KLXjlqPu6VjwdLuVtbEsqiQC5zZSBVBWteNEZgLdtU2AEai3G3MElkEbM5iLHqCjThBuLNQaQeMEtbFY0ULDphh2HzN5F4VyvXBNTUtp3VZSaORSo3DldmyLwNlc4n7dDGs6EhIFOnI3OnIOuZgziS/9+apPsxOEql/t3+BZNPw+DQxj7XDf6X63OIaRWphpvCFxT2vrt8+ed/HgMQ2JPO7v6kNtSxTp7Q73CRXuU1qUe6kFYyP2uHfF4AHTql3CWBklFEp0rLUxqstIElQAZ52U/nV92ehGsqEXeuV+JhZkrYx7PPYcUAtjqv6iL8ETlUqK9wF9Ts1rQRxyFie9MCPBopGZenS/BJQwGZ2ZCM1fqqzc1kAopmKXqXLT7MmUujO9yNBAnlViRGpA2thG92/xMY2uh5gERAEU8Bf6LFPQyAFRmELfAsnacPSi42OdXOZk0bfPvdA1lRJUpYmJkrJv19U3Bbd1B5noYDbvAjB1GaUQKOw6Sg3fWtCV15nJJGZzU5dxRt4LIRS62X3oiN1mLEWv2qd5Dshe5WFtEnyp3yT13jGMxaVtmdi9nUrMUcMlNewxc/PN83q7zFhE9ACidN/Vjf71x8LC5rS0kix8a8ZMFNY5DWghIXXhXw/Kgs6j+TIZUpI65sg0rapC/HGGPwCfGd0ackI/q+vTgx2j0q/dd8UjveVdkIeek9gGhhmO6byVZRhCfuo/IH/hx8e3wrZ6MyucJnezHNCKcNFYqDtu2M9NMv5uVKbYHT1pxD6nQex9ysDlpHgicnlM/fOjZDOjLhibP98wPWn5G7IW6SLCgpHZU9jSyCwbTMB2lIGbCeNmlKKyOsbJMUB9WgHjro4tjf657ubUSplOMVICMoNpQQjzXFrRVUiT0awVhHWZ5bb1oCbuxpr7CjDWTZpJSVvg0QxKhwKqVoYKKHvIrDUmFx0o0YGWu70rLZNdzBfCuqNd9jR8/UbXU7qbSazpyKrjC5RxTct5oN+vWz+kBGhSD3UZ030Yv46nNQm8YYTfIIsl/Q6lgF4PQtpjZ7HZtbtxltj4AujffJxYF4vK8qikKeYtJMTaP178cS4D4kLmunc5RH5CbTknHLW+JulKrlkH/eRmEVivotDkKibJXKm6qrQCQvBeheuIXdJNrugGC6OOtoUFIzMOWDQyy4Li4lOAzJy2dRBcHooF7acnTv6xcJTSup8ViW9E5bYGkmJES2lc1U7IxS3zdA5kunJf29IXtYuOi2dynw0yKolYdELSD0BZN2ZiG8UcACDv5EGdOgGFUvch8xko5OiXoWh0lsZcCnRkgY7ciY7cja7cadzT8j6Ici4Us23QgtpUUNbc01G8Y2q/t4nP+KYg9ZlaUo4AlIldFRiwHeNgbm7A/J2V69W1qpS5OX5sGz2987O+RiNDGGSdLXtV6arU59rqIwKtIrJxWvxM15HqG52qc5pySbe5oqNtCDKiGWaMLCPfDcMsM5ZZO66hM6WZkUglx1DEg16xRCNZeYiZEyc9BIZZVbClkZl6+h86GchEaKlzVkd7N12zOBKXNQDjtm5qiUYnxRavHJW7la4fCC0YWtllYdzTqiCJDaV1OTrLoxWTNCDev9fms97qSALn6fe5dWfptn1C5ujYvBvTJ7pEqWYgRQGlc2SiU20LqSWZiT4y0UMu523G9G4IKJPRXfaA/hyxfkbfSzOY7cOVoQkWc8XZA8uirs5GcUZ86tnhla7d2NjdnEqEiQp+q8teAvnsj9TGuaT0dpnnrGuOWVkYK6PW3uLIrurh0fNfsi+iup8pa90gdy+lzXqXaoMZrytlPWwq1N1kWWxJeKkVyGdrIzNmWDQyy4NSG6EmhUn5dRDxKKSs5mUCPlAPRkS2uqydLnTuaipOYuEoBdDrVTGOgHEnAuazOg+zq12MGoXGNSkSAxgLRfu+djGQ0myvKsx3O/HpvqeYhwCMcFQAJJCJApmeh9Idk9EN+P7UgHFhZ6IPKQp0s53oCCMaAWXEYn8eKPvmocq6SPT7NLpQp/Y5Zdg4R1ckvG1+/B1+bJGodAXciwwoJnsaVD94m8nYlxLolhBZZsSjVuZ4ysj4ZA696/MsHAdR9NNxhI5UoexBru44RjpmmLI3bQW6hxlPyxiTgpHFIzNm2D3NMAzDMAzDDIQtjcz0QyyGbXhrI2Asjs7aCAA2UzZoRQg0uKyluZ2ixaPjmnnEqqUBiMyuw7mLBa39SCyNTcV7gbp1kbS6S1kMtK2TKLrdxkB60VHo5gpS972FUekOlLU0KnLf6FqgSVFUVsbCJnEUfVOfsTRJMNrtG9f/2Y3Rjlme8L6GXwm1Ps/qSzamT0VWxHh/uxAD/74hcSZYecL6klurY2Gtjb1e41iXAvnoN9SmqVveBaEKoDNrQx9MnU3TspKtRoMQ654FveOT6RqIQENyyRAxyE2lPYexUg6z/LDTo7E2Whnte/mI89rHxzBDwqKRmX6k8G5oAOFri2gSDYOIs27pdIfLpnYn4aAYuFnOxDj2zMndZryahreJdbtsaJotDUCXZSC8fAZyk5vJikZdFEC3a0SGji4a9oKZ58aNXegulK5c7c5N7bpgGNHYr2IYS9v1pZgjrmkrtAoyXi9wdTIGtA0X96i+cmYl1oPwgCwtFmN3dfw7Urc0neZEriymN/tn1y7o2VkT+uAEY96tCqszgyn69eoDbeV1hhXjTcs1/dcXykI/2xQ2wjBjgEUjwzCrHnXlWZBPfffkvv+ac21MYweYna2soQzDMFMEi0Zm+slE5VbOhH0va8skIZYkESdRUFIu6lTiTAEAZXRR7wFKQXe7VUa1T4xJWL9U5ZYOXNDO1Ru7pYuGwtmujV+3A8yW0LMKIi4s7BJtij6Qd5DLnk2sMOPSMO3V4pqOKHtAMW8SYLQyn+/PA0XP9Jx21kVqDS3KVrf0IOTm91a76dq/NC8GWRldfc08D62/TRZktx63v9ta/C0h8knvBACoq88xx0DXZLdrpSBmiNXYWR2Zwbiaos6qTysVxAyq1zjcF4a9w8dJw7iCAt6J6gWrufsVszhwIgwz1fQ/dPKkh8AAqyKOTl151qSHMDR6+6WTHgLDMKsQtjQy042zMlILI7UqtsSkCTovFfNGqVmzRLg8jSmkJXoitLV4icwmwyhUyQtaVXGLPhaQdE5JxTJSqyNQxeO5sXQ7QNH1y+pZO7BZBeFjJ2eArABK12mk2hdCiHS3mqJv4hj71hLXN1ZH3Zs3HU56ffvoAb3ewALWoyKP+ZvgvbqeJIu4ZJY2S2JTpxiY+Fdvoem2xLhNAPnkdwEA1Dde6y1FWimIWV1ZjoGpGOvU4/aXszg2Lkfa7qX266Akq2i5keKrh7FMNiW9xONIWRn5OGHGDItGZqoRs1l1Es4EIAVELBiSCRAYLrs2Js7Qjb8jEJI0a5h8t0tOSYnOWBi690B9Wiwg6Xpi4otEUULPFhBdmwyQd4xgdDUjXdC+SLjslRWb/bmq3l3Zh+71jDuXPvf6gVt5sZCPfxvUda+vftOirGpq+oUG1G60BOKAurvz3LiHgSXbribkE99h4hyLEpidMWN2yU4AkHWh7/x7oDMLsfcpExvnNKK3X2oSthz0eB+yT3MAPVZGRYhml/cgwZj4XM0dTV+nBCOLRmbMsHuaYfaUpjv/QcsNXO+Q8UjDLEd73i502UHCdbFZ4vgs9YXTUX7mxUvyXcXHXzRgMM37XO/45JhHwywrWBgySwhbGpmpRszkVQvA+AHU3chtLssUbVaEYaZRIdVTNjGjrLvN6Z1/KukFaC61o5Rpi0jXBRirazwGNVutqyiguz2g2zP1HLOs5p4GEJYKcfXsbAKB7vWq8fb6kEf8VXo/LgW9HqDyKpHFJQIB8LU84zCDpt+X7t/I2ljNz+tu+0UiP/UfatPkk95p4iyLwoYhlNA2QQbdPkSnYyzCRQdYv0QDXQ5IaboyKQUIVXXUoR2T/E2ReXbejEG3JWKYc01sQRxTckytFqN7XXNPR+cahhkjQus9ShebCDt27MCGDRtwzz33YP16PluuZNSXXlHPlk25namIpAyVKY3RrVhxvGTTd9Hvcyd0Lw5JbUOgljWtlTbzSp10n/n4Tueyd5nUgH3dNbF/eW4fWV1003EnxKt87JtG2y+LjLryrOoYyPN6ncacZK231XAE6iEALsYUqIp+F6V/Pen+1Oobr61+39lZX55H5B0g70IccPpExzct6B2frEIs4iL6qf7OTX2iRyGu0biQIuzJtoGR+7ztOSUYiwLy6PNHGwezKhlWV7GlcYlRn3tZWvBIOdEYqmlEfeH04eKIUoJxocW+h2HY76lZBFoC08dlEQgskgpBcWulAahma+k4xzEpEokvC0ZK0BYg5aWnIXvBx8az7oUw4HfSd30UYt+lcacvC4YVbm65cXXb8fHCY1rfQlnu/2VmKmHRuNRQS9kgS8hqx1nKYvdhUzu5wHrW4BKKLYpNLp/a54YQe9Rq2BqkHlkcyRi00kDfvNdKmXaIpQ7d0zCZ4RrKZ5Wb9ZUQuU2UcC7NXi865mR9/8X7wYrbOIN5KpibB3JbJ5MmG8XHRvDQ8OIvFTYQuLsBl8zksZ8RmHA3lvt2mt9TSqDb94lIutsxSTKdzmTHNyWI9c+HvvfTxsLowjG8xdGdc7Nmy+OCvrTJVZ2YnrQoqnqYiH/ZYFWsTdORB4OcjxhmTLB7eglRl78q7SL0gigbiytBbfsbyMP+co/XM2nUN15rXlAx4FytseCO9mlQViVY6RBxQX66Tn+m7YQdP1Lz7Umdup+bLFj9D53ceOLv/PeqVl9x8SlAV1YxVx1pYkFjwQikLaV+rHqqLd7lZ15stqvbTce2NgnkQARGrvmmizEV91agodeDLkroXX2g1Mj/7B+XZsMt5WdejOykj9amq+/9lQ9PWAn//T1F3/dPoevZuav9Avb3pa7pPb0UtmVK0+91xEI16IPtpukw2z+OU2y6CY08G1N5A8hMFeyenjLUl14RXrgo5OIXlBVps6ANiKNT2/4mIW405KPfkFx+kfJkWAAAUKBJREFUVBaz7Zove0K7fADtFlkyXRDhGKOByqqUEpVB8oRIC7amzw7DAj+nS/M5kbVYpEttrI8AhBJ2/NH3SRltU0IkTzMu4cX/RkNa6Edd3ovpMjG99LVC+x86GZ2Xf2K4dS4m5HdWP39nZXXszK7eWMc46SV2F0tpDn8/fwjR1/hdYgzrGNGdnRCHDLPYsGhcKmgiQpzMEVsfqYUkZZEEEURD1vpqrUO2EGZnx7u+1LpjS1m8/wBASpMV7GqxxZnBFGULXgNRALxOu4Di59j97KyG8XuaXAFUlsWiRJDYUupk1izFCZLee59n3r8q3QlEz9uMbVf4vKegRymIrjSy513cOpZpIHvexSguORWioyByWe1/d1wUZfjfqSVOJf5Xjniau7mgn+mRQuhKN7evXCRSVkYAkEe+NXivfvjX5sVsf8kywKcJsddzAAB652fNBKnqlketAYn69HFQqwfphGlWiUp3qAXCtSG+Mr5RbfCixMcBw4wbdk8vAeorZ4ZZrFQABfF69WlCSnIXGwmjuEBzjPtpm1wi/kFcIE2uVf+62U1CXetq63kLco2o699Qj1OLxKIXiW6fZLmJUUrtm6ZsSRfPlHIRNYlJWh7HCUPagznOuLX7SBdGIOp+uaguzfl3PxfCiRgXh5fJtEiMmApr2Qj0P/JCiI4MRTEt/E5jHKObjObYx8S+onFipAMOen3z2/b60Lv6A8X/pFDXvwHy8W+b9DAmip7/ku3BrsJzIT0HApWQDD6smuMVk1+WcDUrlZ5Pz8+xq5wskzw3E++ROz5ZMDJ7Arunl5ji4y+C6GRVLBlQL3XiiF3MdJqbTgUjFUi1GntEUFK0ImKSCCjvdqMLKxMDGG+Us7SACEeaNBAtp657ffh5u6y6dkCMVcoKRKeT1zWXc9DdJBKMbhpgdoE70Qq7TZDhdPoZe+IOYiPj+L+YeDp579YRJ7SMG12a9QsAkAK6VBArtYZ/aSx9WtltdG5r+jvJLPxd/PGbpddZW07A/3/i49OxxNbGFOWn/gyimwOzs2FMqlIm3rHbgXzk/zex8U0cISp3NBCKOmrVi93LowhGui66zqZwlj1xZVPYNc0sISwax0UWiT73HFgS87rFEWi2pMUiURARSQVS04ltmLte359YmRZl9O6WfiZlgQTCOLhBLt4mUvsLqKxEdL+4bEhXsFcI+PZ4Mgfovov3gbMk+O22z7L9rl/YC452Fid3EXCZt8E+MgHputevXNH9Erqv0HnJJe37YQ+ZOevTyenz/+s51Rt3nJbV7zbz5/+0mMNaFPSuPtDJqkzzTEB0pH1WldWxIP87wPxGeV49uzMgdUO797TQtxRAQd53jaVZAH4Mk0Rtn0fn5RfXpsujzzftCLvdpR/UlCBmTgQA6P5X4NtOOksf/a9LFZ4rKdR93IS3WFoxSIVj5l4TARl/1zClf1JhMqiHJzDMYrFCTRBLR/8jLzSZq0CzxSHlBgPsRSq0OopAIEbCsEkwClF/uHXQdYloDHR+sJxx+dW6H6SsgPE2tD2a9kvts6Jm1RnYiSHeP6lHG37fJayV8Zj961RsIBHWJHZxkmil/KMq4UOmLUN0qU1ykMtAB6r9XIYXVPNa1y60tddNpI5T9xoAMoH+R164sA0ZA733Pg+tSUz2mFTXjycJblkTnBNE/TzYVjonVcC76X3KAzSq1TJmWA8HwywibGkcMyIWUEGMFbUyisqSEVsYveUssprFQjF4T05IqdiYFGUJ6NzWM8vgOyiQu28R3ZnXyj84Uq8Td8RJ2tzTUkLkNmYx3i+AsTgKOy3LrbXRLk/jhsqiuoPXymy7iKyQfjtFtazbF00Wx9hN7+IY54tKoPXVRGMGZ//isxP77sVCzxeAyqDt8Sn6AloKiL4JEUFfGEuk0hCBy9paHd3v7ayOSgFKAnloafThCdSinJfkczkg+ya+ckJ0z/xU63z55Hct0UimnLwbxS8qEsaTVZZHYHAWcyocyFkJhQrPKbFtRoKEBykM7F2YijFvii1nmEWGReMe0P/QyVVxZQDNwfUydEHT14ARRc7NSpM6nCCiCS9eUJF5LvbRoYlQazv5SQUoIqZcu63YXUvWFYvImMZCtKNadAB/0faCMctDayJQF4x5p1pW2e1zuP2hCtMohbqRYgHZJB5VAZFlVekeN27yHbpQJnu5b07wtJ4iMx70XGl6fdv/nrYJMbqjIDrSJADNaCselRGSgBGQrn81JY5XdZZ2mUFkHUAV5tjOSyAvArEp8sx8xzJhMctlTSt9tRUCXUj7PxeZghFskYik57cYrdGcdCjr51t3iHkhqonYTK2ffD4OE6oJRxaNzGRg0bgUtCR2hPGKkRhqQkTrocky7s7ZCbpBMTj+ztiui94Bmy+oEmgU+RxQP4Fq7d3IQT3EFPGJrsn93HSSbnJRN+EEd6mI5RZVnOOwjFhLzdVXZMZMqaGBoJyMhjL1KZU2hiOlIVyijLJLuousj0uNLeQtCTI07pEmNzQd41NA733Ph5jNIWYz5C/8uJm4ykRGX20FAGjIKp9P2GNHIH1+a00sTJBKtBm17mITcZhF0zyGWQJYNO4BnZd/wscypeP/UpbHappw7mlnWXQC0LlhnYjMyIVsUJyeD6YmVsmmE4tbVkoEtcOCxRV8bTE3r+lkSKYFrly3T+Is1nhsqYuv1pUy0G4s5GIvYe7y3XxNrKbxeoY5wQpZdx+5LOsyYbltEwzLoVj2MmXNW74IANj95qebCUpAlMLcrJQautQQpQTKzCTIkM8KkNqOPsxA1I5RrWxIAk2acDhPgVKA7HtL5rTRfdUn6xN37V76gUwYrTMIUUJpU/Rco4SAghQKwnkZMuJWTtVNrK20xZPTdo5sKruTKvfV9nDweYZZQlg0jhHREJPnX9Np1KUc1xqMBWMcTJ0SjPEJirqoG5dR9WXo99C7ZWFLj9AswJj4u0gcoJkUfV+bJTIepyoqcSgkcTvnxlJaRm7olChtOsm7bXPLNAlHt9+bstFjpPAtj5nFwYnHXa8/wRybStuwCwmozMZ/ZQiSZToZsVB2AemEI+llbftM+3hGeqGO/8t5DpEXKD/1Z8uiQLp85ocnPYQlo1d+GxpWKOrqXONeK60gRCQgM6DmPo7PlbGQbBKI1JNBqzaoAr6SgwsLIiLSx00HQjFqVQqETQQYZgmYztvjlUBTtrClliVdzSCvh6z/tpBaX8O4TWrZ1VGR8RgqkuMsRZBtTrnrU7jsXrp9cdwQPdnSu/X4bjz+DB0zM1F2nn3cwGXuPeMp2PnqY5sXiDOoLT7L2iYlufm1eplJC07LTVVQV1Us2+NIXf4qqMtfNelhjBWlv4FCXYu+2gptL3Fay9oDMC5rrTPrupbmPSQQPBAmI9L3TbTdoA+46dTxcWg2KjGNxSKz9LClcQ/pvOQSFB9/EQBAPvsjAFCdhOOsYDctdeKJ4xmHOSkJ4k5rsqy1vY5rF8brT+GEYxDUHSHtOIL5ysc8Btab2G0dbwNQxa4JZ/mk+40m/eSAKCt3fpNLKf6OuJjvOOKQ3OraekUzAIB1f7tl4DL3u+iq1vlrL7wCgLU4woaqwdyo1G6pMltfURLXNFBZGwEAtq5hbLWOxWZkbVxuyBPeN+khLApODALEqhjbSLSEhAKEWUZAQVvXgLCWRilUZZWmvRKaBFvszaA3s3S+1qGFUZX1pBf3cNbEhHtabrpggXuIYRYGi8YxMHQLMWqdoFY76qpOxvWpatkmIRifwxqXS5zQ3DLU9dK0rnj8KURGso7pdLOuWrJMPC6Kna6JW19I4p52WeRSAmXfuPgLuw+zBR7ednvFPqeFk3/5gfqyy9TCNEmcsHMCzAm+cbD2/Mux63VPg+4LCJWHrmrynVUtx3mTUd1NWOtdlnWqrJKDhpt0u1CXvcTfPDLTg4KETiQ5lcgADQgrFqU2LmonGoPYR7umJHG5Hq1sSTNVhc4QgRi7pL07Gmh3SSu16ttCMpOFr3hjRn3h9HBCfNFx04DB1sQm2gKwqYuWLudOOlqTxwDBOCjQe1AR7Tg+03+uRXA2BXyT95puhyrsg5yQVZHeD7Vgc9W+jcxY2fX6EyrBCCBZHH0clLaQd6mNG5q4prWdp5VLNKhflAc+Yqi1EkB56Wn1ZZYZtZagK4RmN3UWLmPd1LHreuAlMxX76J7jhCoqGFPx3k3HJsNMELY0LjWjWqaoe2wYC6A/Ien0cimrY9P8Jtq6JvgAcUVc2APWGQvDpvmAr22pibtf5LkVjJFAVWVdoDaVNIo3iU/OY0dkobhypXHGzdp3fAW7XrsZul9CIAOkJm5HQKGAhCmwrwFACgiaDEPHR4vzA+3C0dduXP7ZrPLo8yc9hAUjxRNRaltmR0tvZaSJMIBxYQsoKJ0by6IwlkeBEtL9hD7OAfDnMXpOS8ZXu5taJ/ScpZG4pG0iTJAhHVga04JxOf8uzMqAReOYkc/44MIDy2sZ0baYbHyRigtvx6+ByA2dOMHR9QTTEhfEODmHZg62ttayJ8+g/iP5jqQlMUp6ibe914+y0kXguqbzRFOpIkmEpROViiw3RnSpMP+ukzBzzmfGut7lxO43Px3IBMTa6HRjLYG73/x0nwU9Lta+4yv+9a7XnwDRyfx3QklTOapUxoUNwHeOoXG2SlUu6rxB3ZKYRihlYhuVWjaZ1KsJTe4MaSKMexZQXjy604G0glGghNISmev2ApBn0sM6dkurwty8ApWAdPGLTijG576khXvIkmEMs8iwaJwUKdHlYgAl6vOAuvWwqWROSiTGAnEUl2wQU0m6IgxVgNxt0BDWxrjlYMptQxNo3Htpy6xEopG2fxNSh4k0TjzWTYzVZt/59/ZFtO+EBNfSGYFMmDZ7tmsLAB/07ww5i0pfRXUaYY6XTAB9haBGIz3maJKWEvVpDnpMSu3d1cUlp1YFtZklxSS1hC5n+pxCaxlZFs3ZIIOydR4T57C4nI6fTiyOUaxjuv5iS2tAciOtvvHaYD63iGSWGhaNi8G47gg1VZBkWly+oUkcDijt0Coca+5b6npGfV5M8sLa8J0qGmcijrE6cZZRuZO0lTHuYx0k0rjal4F4tOjEtqNh3CmUqmLpGsrArDZERxpLXyb8byeUMG7jTEH0FteC4qyOu167uRKPGRH9Upj3mXVT0+mAsSIWsMeJOzYbsqhlZW1cCW7qlUycTS2hvHAU9OZRy7pgbLpp97HV5Nwcu61rVkbdft5LTWeYCcGiccyoz73Mx921/smdAEsJw3g5+lpFJyA6LfWZ2joSF7JU3B/9jJBV+z0JM15ffqIlRtCvQoXmJCGhy76dFZ0c3YkUSJea8OunlkYZTRMJESl9fJrOq6xY4TLXU+WOWuJPa6VciEjQTjiWZppe5Sd5MZtXwlGKaj/1S6AvTHLKEuDF4+ueZn6XjoJQCqLUkDRhBoCYIeLQup2TSW0U56YGAGXd1JeeBt0vh6+wwIwFKZTX7Kms6Vr5HTtNuqxp30jAzKlBy+YAxu1cWlc0dUuXhanqAFQZ0imxGJ/j2sQiC0dmgrBoXAyo+3RYaLs8oNkiFwtGWrohWJeoCcQ28RK0QWx1JSe2K86YdoLYCcdYgDa51WNXdCruBwhdhPGFvNatI4um62C+dok0dJvd+OPdELv9U7UxI7fSUgmiqUYKIxg7EkIKuMLaAjD7J1ukLOoGdF/57zc3GAo6sxbsrrthIckxSphjMCeny6aKCO51npvPZApQAsXHXwQ9V6Lz8k8s6rYxFUKUgK5+szbXNCVpWfQkBFt8TqaCUhXt7ui4zA7QbHmMXwNQXzkTcvN7h9ouhhkHLBrHjROMo9wNKkXa88GIlbg2HNAqGHXZEmPXJGpQfU9oCEzE+QkikDIiDBF8sHpuc+em3Oa150RQeFHafUtdi5GAo69dcgJgxKOzGClVZcXmObTrPwwX++gKmCe2Mdgt9ZO5L/Hix69XvXt65qxPo/+RF1Zxja4rS6khsqXvprLunV/FznOPN2+oa7qjgR45nuhFPQfpU5041uhraWNebWyjsUqzZWgpcRnUQlReDiGUF44SKmltdMv51yhN3UZRQlIhGXt9Yre0PzdH1sSiMOeE+EY45YoGIJ/4jmBsasv/sC9W9zmFmRwsGsdIccmpEDM2nsnRFJfiClQ7UeLd1EQ4uuk0S4+ekFwWHnXpNpGy6jW4eAOLJBVT7hyrlSng7cYcZFPTtgl0Q8hna2OLBSK5Cy8KIxbd6zYLT0yeh3FpeQ7k1qLk3I3ufSL2MXBfm53gxx+Wyiir8fYVdF9B98vgefcbT8Sa//ml5rGucMRsZv4bztLoxXWG7pmfWvLxrHvnVwFYV7XF/QMBQNtsajHjsqrt8UMTroCG8AjpjykhBXRHQvQBdCR673s+uq/65JJs42qnIzcBAMriRp8dTb05WRS3GCOEgrQZ1T6z2rmeS1sP1tWIpW7pou/d07oogJ7pYx6cJ+i5Dqi5oOWT3pncJnnc30F95cxquRXa0YeZXlg0jhNqYQJCsejeW7RSJiHDu0JVFS8Yu0pphh65u63FyAyi1m83SippQQMQNPbPr0OlhZwrO+EYVK+x0cWbcO2476DLprJanWURCE/OeQ5fg8/Hqzm3tQpEo6biUZO6j/GY7AWhimeMi0qvXktT/yMvhFzbgbDWXVEUxvizxG7pFLqvAFlZGnW/qufoXNeQorI4Spk+a9IMahUeQ1Cl31aRScy/+7nm5mKuwOwbPr8k27makVDQ1sooEucgjbo72r0PrYzEshhYGCO3dHx+jm+E45tjoG51bGPY5RhmEWDRuBikxEv8kDIUgwAxdRCBRTu3UHcIdXsE30WEYVxIedB4ByR+DI1bnxOKwgouPy2CljypzbOuPvc6PmFS8Zj6PJ3m4tKoxZK6Hd36EiV8dLz91AJKf1d34xAnwKxid1LnJZcAAMrPvBhCqtDSOGHWvfOrxtpYWsHohKwUgJKAnSZyVMdSgXbhGN/gOGz2uMgEdB9TIZpXA7P54zBXfBeKnHtocoyIkl9MG8GybmVsil2ksc6pUju1m/W6YIzd0G2wdZGZJCwax4mzKkltTjJFUVmzqEXK4oSIyNFQQxCVUASCE5KOxUpcFBtoNewBsBc5HYlLIpbockBUUzJK3KHTW7/PbKeQ2mQxA1a0aSLSwmSV2ngiS6SunZTd53UVKiClcTG6uMg8C2PU3FiaMq/p+N2Ye33jepqbB3o9qN196LnSuqRLoGfGNu7C1csVPV9UsbOl9u77SbP2wisCN7VHaWAmN2PtSoiOgshldSwB5FgR4X82rjkKGJGYmaQgXWoIAHMXPLMq0QQYC2SpzLMV1qpfQtukKlUo3P8jX1+0fbFSyeVu3xbQUSv2LSoLoxQm41lAIRMFoAug6IVuaO+iVgiypbUy5+cgU9qd/4tKMI4oFhlmGmDRuBgoTTpPEVHnRIoKu7xopawlj1xgqDszEI1R6yn7fdV376HLIuFqDuL6mqAFwP1YGyyHWhqRTKcFlr3IikgvyI6kVbEuHt0UL+K9y1BV4jGVje2EAB0H/V5nZbSCUfcKk0ShjBgK+h4z6H/oZFsHscqenqbscuqmNlhzoqzc1X6kUlf3S8Hxko5PowgpoKUpdu7OETozZX/MDaeAgJ2nNDQUJDIo5zZXAttf9iRs/PA1i7AXVi6ZKIxIFCbMQEUdYegNsIDySS8CRRhH7svpqOo9UFkWXVJi7IKOj4cmzwjDTDksGseIticI374uPmnAWR1l7QSigbpwrFZsnxPN7fc0vmXImMZWaFxjSig2ZFIL5/alY6eijr6XkeUmjmmkJISIuUDb/UVLpxSoBGvwfdTKWFZjovu71/PWBO2sQf0SKDVmz/tccptXK67UTP9DJ5sJqqpjOQ1QNzUAc7xZaygAI3h79n/ayaCLEiL+79CYRvsIirxHiExAK9KzLhNwnWcEJLQy36EBSCWx7qJ/Hvt2rxaEeBKgr4aN/0EmlBWMygtIAEQsKsC5pL1ALNMuaiB0TQPt52MWi8wyhkXjGOm85BIUH39R3eKQyvoFKouaFTI6ECoJUrGRqZ6ksQhLEbuf295T4raHbppSqFWwoK71eB0yB1QBkedhkewCRNT1yHhI9nSU+CNAXNRlHEuY2OZCebEsqBWzSTjG20R+Vz1v3dFzJfR8MZFM4OWEni8q66LSU9WTe+2FVwBwxb8zk0HdkUAnMyJXCoh+BnQUkAlo1xaRdrqxz9SaWruJyQQEMhJGURU8R1Z6sSrc9H6JtTbbm9kDeruC85cQTkBG//OaGNTEJZ0o4O3Oc6qA7ver8xOt+gAkLY/qyrMgn/rupdh6hhkLLBrHTWlbo0GGgjER09iajJEitjCmLBgpAZmKTwTqVsaEUAo6pgxqrxfrw1gwupI1UpplXaIMjSkEjHAEqmmuhZtLYnHPqe11xBfqUkNn7kIetSFEGSYlSBGKSb99KhADTizCldaZm3x83jQz/7+eE7yf1k45eq608ckSwSmyY2OAlSlUjj7ge1hnrh5jYn1uO20hc+rqFp0M7vjTpTZWTJTm/CFNiAOny+w5+t5Ph+ewuOuTr80aeTR0JQjNOTfR8YXWyqXn+ZpXqF6HEYCvvSiP+7vF2nyGGRssGheD0sQiQckortE9RCjmlEbSLZ0iFRtDn0claQFtEK30OyUARLGOtF5jU3FvWvjbvhbS1oZsTITRYRyiKusC2xb8diVvACSFo3+2IlGXVjD6IUkrMEU1Dr/dldVIK2ViGEuNzn+/tH1/MQCAmT//J8y9/Vn+/exffHZiY2lj3d9uAYDKXe16ZCvjKoZUviSPj10GOZZGxVoURSZ8mIovBh4nqjELI+7m5ARkqeo3w7XWrQnBSGIYk0W8gfp7R+qcPSVhGgwzCBaNY0b3rZURAPrKuFWlDC2MjmTyhbV8AdXFIlWyIfU6xTBWxoQ7trHETk0YSlJOR7SIRdLWkLYYlLkRjjmIcHQ18UT13r12FkZnjXQZ6DLMovaxaMQVmqqVKLJwO7X73hR0HTaJY+asT6eXZZJMq1BM4dzVALD7zU+HzkqTwGIzoAHAldAxzzZ5ytVkbBF7xpJtkoIE/Z87y2VprZrWXc3sIXM7Q3EoZWR5pDe/ZH/TeozUHe2Kd0fhKo0FvJuEZJPHiGGmFBaN40ZVLiWdWWtjnDXtCwWnC0p74iSRxu9MLNNmLaRZwYOsik1Z017wBitu/yx1ATnhCGnu3qUtHk5dfF4wSgRiMsZ1XHC4i6wrXwJ4kedeOzRGcCnTeMlS88V8FaHn7Y1LmRlR11OVVbFjpmkboyw6EiKT0O5/FotIYo30FkulfXa5F4/OythXxkLbM92GuITTAujPm2fvjiZekqbQG4CIRiIWqSva38Qm2gOmXNSUUW7+GWZKGKAYmIUSBMIDzXeclNRdaBNNro9BDHJ1DRKRqXE4Yiuj1u11G2l8UWwFSJT+aUxQSY25SdA5FzPt1tIva9NSy/jlrFuau3msHtZeeAVga26uedMXqnJK7kai1Maz4Aq708xwv1zimCSCUjgrJbVakmVc7CSzABQpmeMeqowKdZOHaxFIXc9Nruhhzu1+HHF4kTkmuGA3s1wQWrdd1aeTHTt2YMOGDbjnnnuwfv36SQ+nRv//vMCc+DsSYjYHOtK0UHP9j2nvY6DBythycWi1IjaIL1rzMHgvk8vVei7T5zZi8Rd8vmGb3ImbZCG66UGRXJeN6IpqA8F73SvqySnU6ugu7nENxRb30GruF82Mztzb/hjo2tqmHeld14BNenHWxG7Dfyk6PnW/rKzkpBi6qwXKVsd21M22eHYqIVCSGrRtiX6phgrUsujWHwvI1I19YBTQkJvfuzgbzjAjMqyuYvf0IqBLZcISMwH0y6qPrTvZxK3sUuIufk2nqSjmkS4bnxzj90PQWMy7rQYjjXN0r93iEvUTcvBeASKrPiNzvy6RuzhDCV+CRyn4jhzxHb1LVCmVv9AC8FZCba1B3hLkE1sakmaYRWPnuccDpfaJJysBPW9uWEymtTSuaxf3qHTomnbleoDqOLR/GpdhLZBB23OIhgwzqaU2sZb9EmvPv3wpNm/5MTeftvrZov6a3jQPKrEVu51p6a9UEe/GpMUoQ5thlhEsGhcDF4tUaqBjJmllW9r5LOAs+gyd1yAA42njzKwk6/Udatq6wNRc0UQ8OuFIBWQbdFmJsBuOENF+ScQgDimKnTCkgpHWdwSwogQMs/Ss+Z9fwu43nmj+7zbzGkCVdS1F+j+bmfNFLXMaJllLuxtFu5x/ZtppchUrl4k3wjpo0krsYuZ4RWaVwKJxEXB9ZX1LOVDLAeriUJL4pbZ4vVQRauXeN5yYaDJNW/3H1HJa1zOiSTRDus5eaQVnZHF0SS9A3e1dDcQskxEroiqMEVKS7jEqr8ZaJCy0pYkrq7nznMvauvZcT9/17786vV+YRWHnucebF/Z32vHKJ0P11Yppjad29U1RcNu32rmrNZwAjGovytAKadoIKv8MWNe2VLbdoYDoA7pblfvZ9foT7PFthI0qFe530VVLudlLjr7ro8brUvR8SIvu29CVXj8Ma4nPbe6c6+q/emtj3OUn4WqmCS72IZ/8LrO4rbnoPws0iFYWkszyhEXjYtBXpj0YXGkNUuetKCHcXo9L7gDwLesckpxcYnd2YImM3L3DiEU3hqAGonXn2tlx6Z1aG8MEzuUjpK6G5YRjKubRzQ8WdE95FefoTvBx+aLEiV7TBAUgLMCtNMp+CdVXUH0+eS8VgVgEvLiZlv7T46Lc1Uc24/7kOVw2tEBuyvY4L4TEQE+BayMIwDYMcJZLaYRjpgElIJQToxK6ryAhsfPVx6KYK7Dhg19brE2dGPo3H7cvVJXNDKRjn920uPuTe+SJebU4xEg8+vjG6NilArUNFo3MMoVF42JDSvCYC4VIi7kmt3STC3pQrOIo81OucYt3VSOyLA570mtzUS8g3nIgkQAJYhXtPCpU9v7YN8b7/cyCSGYWL1PWv/9q7Dz7uMrincp4dqEro243bTk4BGIlZ1vT5DmgbhGMiZso0POfKxzbIBjlpgvCVV15VrKDS5wFrb5weuPw5TM+2LJxDDOdsGhcBLSyriWpqzimnoLOXP1GY30UMhKPTa5p/xzVdQQq4RUsS817hNglrspKkLYJx+DkivpJNTVe604WeW6thHnkpnbrivceSCxlIsYx9V0RujSuaFpL0bmllbMwFgr3/8jXE1/OjJt7z3gKpCuiTkSPKtWKEouUVGzs3Nv+mLzLARRVpjUhDvug1kaUqOKlM2GsjKUwNSHd9IjtL3sSVF+h7Cvsc8m1e7Rdk0ZvvxRV+z5dWRl9NYWysiz2etbSSNzJgRenH7qpU8kwxPVMGbZfNAtDZqXBonExsG0ERR9hL1rX81jZPrXeCqCseCvDLhKpGEb3bAVpOj7SnfysOIuFJUBEIhmfb5vXUvC61cJoXeukWLkGQuHo2nZlORrjMGkVqMZyFdS6YF1HLrHFufCimEYqGNktPX7ufP4mX28w60jIjjTvMwEFZYQjEYwAbBiBCSf4zam/jwd8/JuT3IRFRc9H/yuVedf1qPUXRSZaBXdt/9pl73z+JuhSYf/PXDfa4JcQ3bs8rIcIoKqbqKt+z74HtAqLbBdF6JampXIo0TlTnviBpdtIhlmmsGhcDEj5DKGMZcWUzcjMtFL4WCSg6ncMgAhJeBGXtEj6xwD3tReLkdiK3TDDMGj52riq+EgvHAErHgsjHHXZUr9RVc+pcqJB4fSqDqOmBbvdMn1j1XKCsewr3P7sJ+CAy7492j5gGtGlgoirAhBUZDGORY9aYbGNMXou7GikSw1RSiAq5N3afjCTyXaYQ32/u5lSGr/648eb/4OddtCXb1jQOhcFlylOXc/UFe3OB87K6GomOvHoS+JUFkZdmFjmwBKbuXPhaIK9uORU5C/8+Bg2lGGWHywaFwvnPhoCGje4xwyT/LIn613g92ulILJIUKTiHYetNb+AWmcujnElW7MmCbVe3X3aEyc4kulk7Tu+Eryff/dzJzSS1YOzHpafeXF9pnfxj1a6jAUjs5ph0Thmdr/56VXpDFunTUNBdKSxNirbk9bGIjl05ixiqBUAjt3YIu5V7Sx7QCKTWNWXARBkZQNhcP0oJSLikkAuPkgpk+nsPpvnJAsUVizmCErxOGhgOy330xTkrlTV4cW5p33rP7Osi59jt/TSoZVutZqtdmbO+jTm/9dzoF3nGMD8fzr25ipx09loZXTtC8lzqpTUHScdnfz4bZsfh4O/8t0FbcfYKYlFNmjtVza7pr172lgea3GItCMUEFkcTSxo8fEXIT/1HxZ32xhmmcOicdxQ8SU1NCq3tG8nZktnaHpBpSV6yAmNurHNfOkTaYDStCeME2FovGNTwoy79qSSWgYlvPjtS8VaujIWGXxNxTw8zEy9OtgYJWmLekfxlsEHVL3UT/za1sR0PaJdXUbXEcaV1ylZNC4ZKcEoM1lzU1PufP4m7PfJrYs5rKlCzxWAIsd/x5wbRCfh5m+IYQwK1JcLL2M0DcJR3/dP0QR7rJRlKB6di5q6poHkTWV56WlVRyi6r1ZoEhbDLCZj9mEyA3Et7BoYOpt0oSe8Ieos1uYNcgEvo5pj+176L5MewqogVcrIZ1C3sJoEIwDMvuHzY+3ssu5vt+B+F121ImszLpTsBR8DgMobscJjZxlmMWFL45jRpSm3A8DXZ9QZmQbbHYaWuwEgVHVB1QAphSOMyxq29IYr5muTZ7SNx/FWnaC7AbE4Au1xjoGY1HVh2WRpTLmn89xYGFM1zyTZD1KbzjE0qzrYmZF7mo4tHpe9GOhSA73K8lja7GlVKK7JOCU4a6OQIrCILfdyMAtFz5Wk4Lms3NNSQNAkmbZ1DFm+KJU1/Ys/OtJkY5cat21+HLTSOGTL90bahnGgt19qzg/0PKAjyyFJjPHehyYvBMG5nXvve75dTofWWKUxc85nxrk5DLMiYdE4Rnaee7yJXbSCUAAmXqmnbMuvSkzSmmqmfEa6y0kgJm0sJPqoynRE5XsEinS8Y6qoeCwSEydhWsImOb5UlwW3Pu+W7pH5xPWe50b8qiJdAJxmSqYuDm7sReHd0q6Vmp4rfIkdrTSKuZYyQsyiIWw2sKTiR+lKOA4oHbPS2Xn2cRCzGaCMUHTtRgGYcwmqG84aJbGcjXEfCilw63FHLKlw1L/5uLl5VKryfylSNUEVVW3GsjAualpKpyAZ13HHKPo9ruyRq1ZBbzoj5t72x9BKY82bvjCOTWSYFQGLxnEzQtb0xNa/GJ1YFvKdCx3HKBnT9mK6Wq1YzHSz7m+3YNfrnjaedb3zqwv6nCu3c9vmx41lHJNGbn5v47xRrImzb/j8OIbDMCsKFo3jpNTe/QzYOo22m0NsbaQ0WlqkgO6rsBWYFLUM7CBZptRApiDy2NoYuahViZpLpyiq7Ms+uSOP78LdeDJnZSzta+smdwkw3jLYJeMn25/n0EVhajjq0riqaztHh0kwDve+KKALa120Fsaq+wt3fZkGvJUxutmRkChjC/sqZO2FV/jXu994YmA19NbGKB5UR1nAdB0L5eCvfNe7pwEsrbVRKfP/F1n137a1GP18lzUduKajcJWiSK+fYZixwKJxnLjiufa1L7ODLBCOZtnBq/M9n21MoxNmrq5YqnyPF5BWPEIKk2EN1GMQAX/CdcVvdb80LQ9JCRuauCOiQsS+dE8mKhGpNIQTju57HfH3W+HoptN6lbrmio4uFG5aqX2mtO4r6PkS5XyBMu7AwUwOWrRaimTYw69feMyqtwjruQICudlHQBiv3PSZ/uIc5wvJwF7Q9/zyA0Bnxoai2P+/z5R2//OiyppWVdFuX25nmOS+Idn1uqeNRYQzzEqEReNqYBLu6CmAE1+Y5UZcABwgyRtLzIOvunEi38swzPTConGMlP0SGamvFhT1JtbGYdFQoUvPJb30AXRk5bqWwrQiAyo3YKfKsnZ1HYWsi0faXsvXN3Rt+FyGYb+yJmpZfae3dLqxeVe5WV4A1rpJXEYyYb0grnNN36csjM6y4ILdi4K4pKtkmFRhY2Zp2fjha7DjlU+uJmRVCIWQIqhTSvsjMyGuQL13UfsC3sYjsPb8y8f2XQd/5bv496f87tjWl0Ld8CaTJJdnwOwsRHcGKBMeEGdVBCrXdNk3ngnaLtCdFwBAaajPvQzymR9e8PgWamX87Uv+gMNhmBUPi8Yxsf1lT4KQAiXKKlsUSHeDGQXaISbImjatB7UiLmugEnMuYcYt71zHWSRaSxsz6FzSfWXKdzihSC/kPuNQh27yjBQrV8LEbfaVLauTiDFSpFOMK83jXZeJIt+0r2yvD/R65gGTDenjGa2Let17/nm0fbzI3PKHj8WhX/vXSQ9jIuhSQ0kFKYW5CQL8caT6pekTbo8xrqGZZuasT2P+3c81x7cLgbFhJFiEYvWLbWGUR74V6vo3AAUpv+VEYUYuSbQjlBWQXjD2+uQGkmZRm9eT6A/NgpFZDbBoHBOxlaRUVjymBBwwVO01x8CyOz4hBTVrIDpZZQWMLZdAVeuRxi/SeDNSmsLVhnT9Wn3NSTjLovQtuXSmIJSoLACuZmOQCJNV03y8JYnPopZGZ1mYmwPm5qF7JtCTWhldTOM08PNjHuVfx0kMqwlVVKWb4tg8Vw5JlxqKCy63onf1/X8LgPUGqNZGAZNi12s3Q8zmEGtzzJ73uYaFdlfnhKKE7naAbheQsjmumZ4HqLWReh5IS9H+h05G5+WfWOStZZjVxeq9mjEMwzAMwzBDw5bGMUEzDZ3VUdgsUW9xdFbCIRBRvJdHGiujyBJld4AqjpG6reOYxxjn8rJWxlTWJL37p7Uidal9iSFkqMoOlRqQGlraTGqXIU1jGgMrI7GWBl1kqGu6593Tet5YMPV8aR5zxtqoFimTdFQU/c1WcVkZXWooWKtzPM8ea2VfeYskk0bPlaGXwBX0nsI4UD1fQiuNdf/zS80LRZZG9HpAt2/imum5wEGrJjh3tLMy1jrCTN8+YZiVAovGMfCbU3/fv9alDuoqOtHo3XO2fM6gPrxB7CMtuYNKjJoVWUEYl8EJ4hiNyxpAreYjACIadfB+YI9WJ0j9tqu6i7pftU4MSv64jjGpMkB+/aQLjLuwFAXU7r5vvabmTCKMc03f76Kr2se8yGw76hEAUHPF3rzpkf71Q7f+cEnHNCnufP4myFxCqnTZGK2MW1oV0+lmnSb0fFG/4bOtMqeNtpji/kdeCDGbQXQyU0u2KIBuz5wLrGhEng0+J7gkGJoQ4+aTLjm99z4P3TM/tQhbyTCrExaNq52VdFc+4bi4nzzu4QNr6jHMuNl59nG+ZeaGD35t0sNhGGYFw6JxDCgSnC5JL10nIEQmvHvOTVNxp5eIlPiQNiFGO4ulLZhM3deik/miwLHV0ZfrAdpbEY4ovmLrKnVRa+eapC5n56p2lspWq0JVZkcXJfR8Ab2zIO7pAnquxJo2V9gS8fDv/sS/dhZHh7M0P+zbP1rqYU0MXSoowIRKoDqm6fGqbfKVmkKL2TSx9sIrTG/7OGyl1CYLfZmULFL39iD7OXTHJAqK2RJihlganZUx7mQVrESlHxat+FhimMWCReMectcL/lvwvqRZokREUgHpsYnFKYHY5M6j83ycJC3L4zO1E+0GafY0iTETTaItRZvYVFYkEhe1GaiZHtSKjDOmG2szuo41rkWg8kIRMLFeTkBOE6kL+GHf+fEERjI5VF9BJLKmKS6ucTkInkmz7p1fxc6zjwsnWrHoQkvuPu2JU13UXt0zDz1fQHQyQArI+RJiJgO6fYiZvuleJSUJXSGluOJyXInuUKnjaP5dJ43Uc5phmGZGyp5+8IMfDCFE7XHGGWcAAObm5nDGGWfgAQ94APbaay+cdNJJuPPOO4N13HbbbTjxxBOxdu1a7Lvvvnjta1+LYpn2C40FI7OHtFkIBlg/d776WNxz+h+OdzwMswz59QuPwV0v+G+r6/w0wLo49/ZnYfdbn4HdbzzR9PdmGGZBjGRpvP7661GWVSboTTfdhOOOOw7Pe97zAADnnHMOvvSlL+FTn/oUNmzYgDPPPBPPec5zcO21pp9sWZY48cQTsf/+++Nf/uVfcPvtt+NP//RP0el0cP75549xs5YG51pzuHp81CJY1qyDg62KIotczpFbL/Xeu66BumuaJsu47++T9bjMa59ok7iXaLMwosVFnQlT4xFk38QWRwp1M8X9sImVUc9Z9/SceV/2y6nqNU1d1auVslBBEozIRC0zXysN1ZCxzyQg5wVVUpfs8rDWrnnTF7D7jSd697TqK2BOQs7m0HMlREcaK2SHWB2ByvIIhM0MItd0TJwEw4KRYfYMobVe8Jnm7LPPxhe/+EXcfPPN2LFjB/bZZx9ccskleO5znwsA+MlPfoJHPOIR2Lp1K37v934Pl19+OZ7+9KfjV7/6Ffbbbz8AwAc+8AH85V/+JX7961+j2+0O9b07duzAhg0bcM8992D9+vULHf4eccdJRwNIuyHrIlAm5yXjFiNxlnRdZ+E6gnXaOEfpRKJ978UjHY+b7r7HrdfGP3raBGP03W6aoN/fkeE6yVjoNvp9SbK3db+sChkTwaitQFS7+lBzBYrdBfq7Cu4qMkXctvlxwbEqpcCDvvid2nK3HncEDtnyvaUc2rIlaMuIquKBE42qr3xGOgDs98mtSz7GUdj9xhOte1pCzOReNLoMax9qE8c6OmjRb8CEsfRNCS70FTr//dIJbRnDLC+G1VULLu7d6/XwD//wD3jJS14CIQRuuOEG9Pt9HHvssX6Zhz/84Tj44IOxdas5cW3duhWPfvSjvWAEgM2bN2PHjh344Q9XRxkSyjCWgXEtEyy/HMubLAMrClOHLYjM0LT9x1dIcstvX/IH2P6yJwXTOKyGWU4sOBHms5/9LLZv344/+7M/AwDccccd6Ha72LhxY7DcfvvthzvuuMMvQwWjm+/mNTE/P4/5+Xn/fseOHQsd9thwQi11UazXajRWMSEFtPWgplzZALw7m06j8Xxxdrb7fvd9QlUZ1XFR8VrmpU2WgRRVLUU337UGHJQkQ+pF+u1uSIjRpS1QrBBYHX0bQ9jMR9oqzfXD7lcFvE0xbxsH21co50sUc9NT2JsxuAoB7lgsGwQkWxmHZ/37rwZQCQ3qll6OAn3N//wSdr3uacaqOGP+52Imh1QauqOMlwIAZnNA9UOLI1AlytHaslO8H1L9qZdDWAHDOBYsGv/+7/8eJ5xwAg488MBxjifJBRdcgLe85S2L/j2j0pT1ScVcvLwTd9r2pq7m1XsUJ/v10jf2O2Ih6Ur8JMWjz56uio4HmdaZMOJxQAxjDbuextjGeF+4LaEbZE/4OnJP676qC0dboqWYK4xLrjBlW9jVOT08+KobAQD//pTfrR8XzB5BO+i485Cirupl5E1Ye+EVtWnz7zrJuK3LzE9z5cQEvWoF3WDIObc0+2D+3c8F+gozf/5PizP4McDlppjlxIJE46233op//ud/xj/9U/VH3H///dHr9bB9+/bA2njnnXdi//3398t8+9vfDtblsqvdMinOO+88vOY1r/Hvd+zYgYMOOmghQx8bbXf1KbFHPzfRiydpAbgk61BDLjuqdSCq9TdubnjYYQCAI3+6bezrZpjFYlVYrVz70WDacNu96/Un+OV1X2HdO7865sExzMpmQaLxox/9KPbdd1+ceGKViXbkkUei0+ngyiuvxEknnQQA2LZtG2677TZs2rQJALBp0yb89V//Ne666y7su+++AIAtW7Zg/fr1OPzwwxu/b2ZmBjMzMwsZ6qKilfaB/b/4oyMBmGB/Ny9FkxXSTA/vOEUmB14EhBRVcXE0B6mW1rIps6qoNrUAencybNu/nsm81mXp+1mHK4zGlVUZjW69GspYT621EahbHOl6vJvaradfmn1FrYzzVbY0YCwuyhY4Lgs1VhcdC8bx4CyOzPi4/0e+7tuXuv//PpdcO8khjRUffuIaALjwGwA6ExCoyrSFxeIV8lP/AQDQe9/zMXPWp9NfMEUu7Gmuq8kwMSOLRqUUPvrRj+K0005Dnlcf37BhA1760pfiNa95Dfbee2+sX78e/+N//A9s2rQJv/d7vwcAOP7443H44Yfj1FNPxdvf/nbccccdeMMb3oAzzjhjKkVhE7/648c3zlMNIi8Wk03i0c0D6gkrVEQ2leFRpa4JR2r5dOIRJWrxjt5VDdtVxn2u1FVZHiCwHHox6baFWhWVBjJUVgDqRidj8593bjUvGlW93E5f+ZZpAALXtHt986ZH7nF/ZxaMzLRT2v+AVnrqs6QHcc/pfwjZkb53vO4rILMxylLAdEKw1xslQm9HqasuMOSc2n3VJ2vfs/b8y/3rWqF0hmEGMnLJna9+9avYvHkztm3bhoc97GHBvLm5OZx77rn4xCc+gfn5eWzevBnve9/7Atfzrbfeile+8pX42te+hnXr1uG0007DhRdeGAjQQUxDyZ1fPv2ooHyIszQOg4xc13HJnKZ5Zr5sn+/qQdpSOz5BZsTSPEFZHqCa7yDlearvluTzUfkduq4UVjDqvgosjTXBOFegnK9EYzFfopwvzPOceV1a8VgWGo/8Pos/ZmXiyn7t/5nrJjyS8bHz1cdCzGQQs3lVikdKoGNqOaIjzXmo2+D5IMlzXG6HYYZnWF01sqXx+OOPR5POnJ2dxUUXXYSLLrqo8fOHHHIIvvzlL4/6tVPNKIJxqQmTbxpiLSO3snltXcvOPdT2+cUmYb31GaNcGJpZJTiRuJK48/mbalZSE6aiACWNO9o2B9AlyaZuw54Peu99nvdWzP7FZxsXv+f0P/RZ6KnsZoZhKhZcp3G1kypSrEudfMTELuwgJmeAAIpd1nHMo3uvyrAUhzsp+kdpCgGX/dJ0llAkc9m5ivtl5S7uKz/fL5Mqb+HdzHSbEtmN7r3SNSujyY4mVkaSQe3c0KV96FL5osa+u4jSePh3f8JWRmZFEf+H3X9hORMLxnXv+ecqrrnUQM+W4OpX5yGtyPToHFSd88h+GXBO3fDBr/HNJ8MMyYJL7jCGX/zRkTjoyzf497dtflxtGXoyclY/pXTgpqZWvEHWQV2qmps6mG8/k4pvbEJB1eIcAVSxjkBY17HU1V2/jS/SSg1f15FsC4CqrI5S5oIA1ARjYV3TpY1rBOAFpLLT9jSWkWGmlVggNsVPL3fW/e0W7Dz3eEDamEZlw2b6NvQlUVc2gNattOfe3W99hk+oA1DLnHaJRb9+4TFB7cvlHivKMOOGLY2rlCYLJYDqLt9Nb7gDX5LyHt5yGvbZXdIxMMyUokuNW487YtLDWBxSBbudd2IM7Hz1sbW2jIvNr/748a2JlAwz7bClcQ+hVsZRia2NCyVpjSTWRqD97iCVXS0xoDQP7Vbjur4stP6jc1FbK6Mr3O36Tnu3dGFd0tY1B5h9ePBXvruw72WYZYSKwz7s+xVZ0qivsJZYAufe9sfmXNBBkOBSXHwKgOrmsfOSSwCYcjutlMQaaXnAx78ZLLIYMaQHfv76sa+TYZaSkbOnp4FpyJ5uIuWeTkGzpKlwdOJNZPVp9XXIgcuk5kuSUU2/y2VYx99dy7DuSPPdLpMRMIIxE4MzqCN8LGPkitalfZ43NRl9q8DCuKGLeeNm2hPRzjDLhds2P64W+7wixeKYmXv7s4LYaPSr0BdXuksVihNgmFXPomVPM+NnkMWRXizC1oNVbGO8TGx9pPO9o7fUvgUhrfsooj7VpSqRdUw7Lw1AKNtb2lkh5WBL46A4TDce1zoQMCd2JxireoxGMC73BACGGQVnVXT/40O/9q8THtGecfOmR0JKgf9y7U0jf7b33udBdLKhSurEWdM7zz3evIiSAl0so+qXK6qEEcOMG45pXCRoluO41zvsMk3fHwjIMrRe1NZR1mMKGxkx+zDZH7dh+5TtJcsZjswkuXnTIxd1/b/4oyODEl63HncEbj3uiBV13P/0Cab7l1Ia//YHj1nwevofOhn9j7xwXMPy3P7sJwTvOQaRYSrY0jhm2kRaaCUMe1A7a6Oz+rX1qA4zrQdb8FKWSjqmobOsfRa1rd2otO/yUq1XQWRZchuTYyXxjJqW3gEq95G1MmqlUZLuL8vd2sIww6DL8CbwIV///oRHtGc87Ns/8q9/fsyjFr6iBcRQ04xpWp8xLkdG4ThEhqlg0biE1FzG9uQUl+GhwjGFoO34bM9qKsaSFjy097J2n6CSzok+rTQkJJRUkDKzLmzbIjDllnbjdtuqSIHwJouly5AkdSJpTcZAQJKSOwyzWPzkcQ/Hw7/7E//euVR/fsyjFuRWdfzy6UcFscNUFAJhnC51SbubqpXEoP147xlPgcyk6RKztgOxLoeYySE61TL9D51MyuyYm87GntMEX6/W1Z+1ngyuyMAwzbBoHCPDlL5I111stiom19FmhWy5qNB5A+MLo+/yrm61B1nSTSQEo/9+6krnkzmzBPzgUYchz80N2bajHlFLDgMQuFWFFN7qHSfCpRLeFtJVyYma1fgfUKVCBuO9qLKebXeY+Mba7p/5//UcaKV8TOOu1z3NJ9kBQJm46WSxyDCDYdE4Rg7Z8r09Fo7uotAm6VJWSK3aLW9NBcK9VTNOhmnIrK71jx5WQKbc9q57DHVNK+3jJ1WhoErtrYyuiw27pZnFRilgyPuqgLZWm22ehJSVEcCqz5CmVlbhbir7yhb7tpnQtIYrOadQQbn2wiuG+r5fPv2oVSnMGWZYWDROiPiuNr6IlG3WRycsZeimboK6s8Pvq8cYKptRHS9be58oE+RL7hCSLnZ3IbB1GHVfQc8V0PMllO36AoBkTFddX9gawCwmP3jUYf516lhTsP87K1Tcjdctf/jY5P8k7gaVuilUDYJxtfObU38f2YyxMGb2HGHOOwUA20UqPu8pHZxXdr/xROh+ObRoTLWHZRimgrOnx0xT/+m2B1DvK0t7y6YeutS+/3LZVyiL8BEHdsd9sEfpquLcczKToWVRikAwetxr5852D1qPca4w9dPmSuhd/UAwqr4ydRnnS6h+WSW/FGrZJwEw082jb9oGpeAfyZ7tqnqYOLiG/1vis+5B/7sroYf0YvCAj3+TxDWbGq56vqhuMucK6PnC1nMt7LxKMMJWXECpsfPs4ya9OSOxRwlCDLOIsGicAkYVmEC9pE+8jLuouWXj76reN1+sRCbSFsyFxDTGFkcXcO5cTtFFlpbY8cJ6hSUBMMuH+D/kUImbr/g/Sec3te9cSSV1xkmQ0ayqOq6anjdc5yj6AMbacnCpUUqzcGSmEnZPTyFtlr9REmmcO2xYNzZgusWkAv9rLmlqdYy7wcR4a6oVfT3rZiZdYGh2dOlilWyJHa20cVMv0wsAs7x47I+2Aahc1RLtx50CIJP1B9Lxx44myz9TQVv77Xjlk5G5c1NfQUsBqPqNrROUzsqol6F4fOjWH056CAyThEXjEjHoojDsRSMVhyhkXIKnyngWUlSXs1S5nyEyOWstDamAtIIxwNVwBOxJWwUWANrSS/cVyvmi5pI+4LJvD7U/GGaxePRN22rTfvy7hyU7LvkYZFXamMd0iSv6XwWwIuouLhXr33+1EY6A7UMtIZSV9LS8F8x5cu35lwef3/6yJ/kwgL0/9o0lGzfDrCRYNC4So1gOQtfXYBdsfZl0lEFQz3EBLmVBYhZlIpWUXjRrVkYqHIHqjh8gBb1NZrTLiuauL8xygFYcSFHZHMP/aUpEcsjFaFTZ0dq3MwUAYc+Bfn8OOP/++oXHQBUK+31y66KOl2FWGiwax8zQFsOWi8eobtjw4hRZIcdZUzFlVUxZGWNKHTz7ri/9yvVc2kQX7vvKTDOPuNFYH3/8u4cNWBKo39rVBSKHXIyGVhplv0QGVH3vM1EvOZa48aQxpftccu3iD5ZhViAsGpeYJquiT1qJukMMtU5q8bMxjCnroyJTB7mlQytiFN/o4hl9DUf7PtnlQlVldWxBXT1vXNOFzZYu+4pP4syywolHAPjhYw6DlPV2oUKF/6GyQcgww7Pxw9dg+8ueBMA0pHJxjTUS+/r+H/n6Io+OYVY+LBrHyC1/+NjGeU2WRSoWaU9WxzAWjUDgKQEthRePspOFCw/ZjSIu9o0svRx1S7f1ynYxjAACwVjMlyjni6HGxDDTyCO/XyXOSAlSR5XUaGz437FoHB1ankhIAakSN8ilwo5XPhnr33/1Ug6NYVY8XHJnjKRqLSbLbCQEYxO0ZlzToyzSNeHomKr1pUuHpMY5Eu6iGHeNIS0CjXg0Nde8S9rGNDLMckcpoChG+I8qDaWMpZIWFWeaufP5m8K6l8p0kIofbr6zSjIMMx7Y0jhGBmVB0n61TrwNKq3grBiO1MVFSnNhAqryIEKacjuZtRDqsrIcKqUhQTM5q4xsVWpk1MKIPYiLTNRmRKL48YGfv35h62eYKcKV6nHQ/yr9j8Y0TWfq6FJBlRJCamjZfLOpyz28CWYYJgmLxiVkHKU1Hn3TNvzr4aFwpBcdKYE8N8klEhJaVpGMWjW3JtSlgpCZX87hSvgoqUwpEZetKAUgNXSmfOZinBSjlfKxjHrOlNLRSgdu6WK+vWc2wyxXXMmefz38sFZh6OZ97+GH4Yif1Mv8MBXGNV1gn0uqhLnfvuQPAvc/F0xnmMWD3dPLkDZXtZsPwLq/tHeHJzvLkDvyoBtL3N0i6t7i3M20DmNwkqbL9hWgqraIrtQOt09jVgNF0ey2Tv1/mWZcsX+KL9lFWqy681rZV/j1C4+Z0GgZZuXBonEZcsRPtjVaJKhgBJqzsRWJYfSuYtJD132mmmdihxyu20LVAtAIQ20LdtMWXy7uKBalSmkcsuV7Y903DDNtHPnTbTjyp9sahaKbf+RP2co4iIO+fEPNgrj3x76RjhclITAMw4wHdk8vY3wco6xPpyVATAyjabvlLHsS0nexkEFmp3Fnu1Z+vnxIVsU5Ziqr+rqqrEp86SjjoiYldvR8iXXv/Gpt7L98+lE46Ms3jGdHMMwy4MifbsN1DznM/1/ZsrgwUjHQrt3gnc/fBABB0e7bn/2EpRkYw6wCWDSuUJQCXBMXXWog6mCh+soLQQUASkPaPq7ClttxyTFlX0GqsPZc5tZbal+jkbbwclZHNZcup1OyW5pZhSgNxHWomfGh+vWdq/oKv/ijI/kmlWHGAIvGFQyttUgzqeNlgMqSuFSZzAd/5btL8j0MM01suoVd0IuJLuvVGJTSLBgZZkywaFzGuBio7z28ucYbtS6WKCGtBdH0bhU+O1oogYM4vpBhmGVMqhoDC0aGGR8sGlcAR/ykXoaHErilAUAZ8fiQr9+0+INjGIZZItiDwTCLC4vGFYxSpti3iOIZASseGYZhGIZhhoRF4yoj1d+aYRiGYRhmEFyncYURl98BKvf0Yd/58RKPhmEYhlkqbngY9zBnFhcWjSuEuO+tw9WCe/h3f7KEo2EYhmGWiq2HHoathx7GBeKZRYdF4wrCWRlT1kaGYZjVSlui4HLn2kMO4zaUzJLBMY0riEffFN5l/vAx5kT5iBv57pNhmNVLkydmJeDE4hN/sXK3kZkeWDSuYB75fT6JMAzDrGSUAp70Sz7XM0sDOzIZhmEWkS+sX7muUWbysFuaWUpYNDIMwzDMMuXJt7OVkVk6WDQyDMMsIs/YwRd1hmFWBiwaGYZhGIZhmIGwaGQYhmEYhmEGwqKRYRiGYRiGGQiLRoZhGIZhGGYgXKeRYRiGWdVcfYApixR30+L6hwwTwqKRYRiGYWBqHkpZicdvHHRYstPKdQ8JRebjf8bichr4f7n5XcrSvH+h5t9l3LBoZBiGYRhmxcBicfFg0cgwDMOsaoYpkL310MMghXkdu7Gv/6/GwuW6sygN//6YW1nAjIsvbTys2seq/nAWRmbxYNHIMAzDMAPYdEso/m54WNge0rm2B7X1c/GTSgFPvZMF5ShQgRi/53aKSwOLRoZhGIZZAM7imBIsTsh846DDasuwwBnMZWvryUmxWKSvtV7iAa5SWDQyDMMwzJhhtzSzEmHRyDAMwzAjcuRPWRQuBp+ZPax1fuyS1poTX5aSZSkatbVD79ixY8IjYRiGYRhmXOzSVTaLUgASyS004UiDtcA4cPtQD/DzL0vReO+99wIADjrooAmPhGEYhmGYSfLyDRsmPYQVw7333osNLftT6EGycgpRSmHbtm04/PDD8Ytf/ALr16+f9JAYmDuVgw46iH+TKYN/l+mDf5Ppg3+T6YR/l6VBa417770XBx54IGRcU4qwLC2NUko86EEPAgCsX7+eD6Qpg3+T6YR/l+mDf5Ppg3+T6YR/l8WnzcLoaJaTDMMwDMMwDGNh0cgwDMMwDMMMZNmKxpmZGbz5zW/GzMzMpIfCWPg3mU74d5k++DeZPvg3mU74d5kulmUiDMMwDMMwDLO0LFtLI8MwDMMwDLN0sGhkGIZhGIZhBsKikWEYhmEYhhkIi0aGYRiGYRhmIMtSNF500UV48IMfjNnZWRx99NH49re/PekhrVi+/vWv4xnPeAYOPPBACCHw2c9+Npivtcab3vQmHHDAAVizZg2OPfZY3HzzzcEyd999N0455RSsX78eGzduxEtf+lLcd999S7gVK4sLLrgAj3/843G/+90P++67L571rGdh27ZtwTJzc3M444wz8IAHPAB77bUXTjrpJNx5553BMrfddhtOPPFErF27Fvvuuy9e+9rXoiiKpdyUFcX73/9+POYxj/FFiDdt2oTLL7/cz+ffZPJceOGFEELg7LPP9tP4d1l6/uqv/gpCiODx8Ic/3M/n32R6WXai8f/9v/+H17zmNXjzm9+M7373u3jsYx+LzZs346677pr00FYkO3fuxGMf+1hcdNFFyflvf/vb8Z73vAcf+MAHcN1112HdunXYvHkz5ubm/DKnnHIKfvjDH2LLli344he/iK9//es4/fTTl2oTVhzXXHMNzjjjDHzrW9/Cli1b0O/3cfzxx2Pnzp1+mXPOOQdf+MIX8KlPfQrXXHMNfvWrX+E5z3mOn1+WJU488UT0ej38y7/8Cz72sY/h4osvxpve9KZJbNKK4Hd+53dw4YUX4oYbbsB3vvMdPOUpT8Ezn/lM/PCHPwTAv8mkuf766/F//s//wWMe85hgOv8uk+GRj3wkbr/9dv/45je/6efxbzLF6GXGE57wBH3GGWf492VZ6gMPPFBfcMEFExzV6gCAvuyyy/x7pZTef//99Tve8Q4/bfv27XpmZkZ/4hOf0Fpr/aMf/UgD0Ndff71f5vLLL9dCCP3LX/5yyca+krnrrrs0AH3NNddorc1v0Ol09Kc+9Sm/zI9//GMNQG/dulVrrfWXv/xlLaXUd9xxh1/m/e9/v16/fr2en59f2g1Ywdz//vfXH/7wh/k3mTD33nuvfuhDH6q3bNmin/SkJ+mzzjpLa83/lUnx5je/WT/2sY9NzuPfZLpZVpbGXq+HG264Accee6yfJqXEsccei61bt05wZKuTW265BXfccUfwe2zYsAFHH320/z22bt2KjRs34qijjvLLHHvssZBS4rrrrlvyMa9E7rnnHgDA3nvvDQC44YYb0O/3g9/l4Q9/OA4++ODgd3n0ox+N/fbbzy+zefNm7Nixw1vGmIVTliUuvfRS7Ny5E5s2beLfZMKcccYZOPHEE4P9D/B/ZZLcfPPNOPDAA/GQhzwEp5xyCm677TYA/JtMO/mkBzAK//mf/4myLIMDBQD2228//OQnP5nQqFYvd9xxBwAkfw8374477sC+++4bzM/zHHvvvbdfhlk4SimcffbZOOaYY/CoRz0KgNnn3W4XGzduDJaNf5fU7+bmMQvjBz/4ATZt2oS5uTnstddeuOyyy3D44Yfjxhtv5N9kQlx66aX47ne/i+uvv742j/8rk+Hoo4/GxRdfjMMOOwy333473vKWt+CJT3wibrrpJv5NppxlJRoZhgk544wzcNNNNwXxQMzkOOyww3DjjTfinnvuwac//WmcdtppuOaaayY9rFXLL37xC5x11lnYsmULZmdnJz0cxnLCCSf41495zGNw9NFH45BDDsEnP/lJrFmzZoIjYwaxrNzTD3zgA5FlWS2L6s4778T+++8/oVGtXtw+b/s99t9//1qSUlEUuPvuu/k320POPPNMfPGLX8TVV1+N3/md3/HT999/f/R6PWzfvj1YPv5dUr+bm8csjG63i//6X/8rjjzySFxwwQV47GMfi3e/+938m0yIG264AXfddRce97jHIc9z5HmOa665Bu95z3uQ5zn2228//l2mgI0bN+JhD3sYfvazn/F/ZcpZVqKx2+3iyCOPxJVXXumnKaVw5ZVXYtOmTRMc2erk0EMPxf777x/8Hjt27MB1113nf49NmzZh+/btuOGGG/wyV111FZRSOProo5d8zCsBrTXOPPNMXHbZZbjqqqtw6KGHBvOPPPJIdDqd4HfZtm0bbrvttuB3+cEPfhAI+i1btmD9+vU4/PDDl2ZDVgFKKczPz/NvMiGe+tSn4gc/+AFuvPFG/zjqqKNwyimn+Nf8u0ye++67Dz//+c9xwAEH8H9l2pl0Js6oXHrppXpmZkZffPHF+kc/+pE+/fTT9caNG4MsKmZ83Hvvvfp73/ue/t73vqcB6P/9v/+3/t73vqdvvfVWrbXWF154od64caP+3Oc+p7///e/rZz7zmfrQQw/Vu3fv9ut42tOepo844gh93XXX6W9+85v6oQ99qD755JMntUnLnle+8pV6w4YN+mtf+5q+/fbb/WPXrl1+mVe84hX64IMP1ldddZX+zne+ozdt2qQ3bdrk5xdFoR/1qEfp448/Xt944436iiuu0Pvss48+77zzJrFJK4LXve51+pprrtG33HKL/v73v69f97rXaSGE/upXv6q15t9kWqDZ01rz7zIJzj33XP21r31N33LLLfraa6/Vxx57rH7gAx+o77rrLq01/ybTzLITjVpr/Xd/93f64IMP1t1uVz/hCU/Q3/rWtyY9pBXL1VdfrQHUHqeddprW2pTdeeMb36j3228/PTMzo5/61Kfqbdu2Bev4zW9+o08++WS911576fXr1+sXv/jF+t57753A1qwMUr8HAP3Rj37UL7N79279qle9St///vfXa9eu1c9+9rP17bffHqzn3//93/UJJ5yg16xZox/4wAfqc889V/f7/SXempXDS17yEn3IIYfobrer99lnH/3Upz7VC0at+TeZFmLRyL/L0vMnf/In+oADDtDdblc/6EEP0n/yJ3+if/azn/n5/JtML0JrrSdj42QYhmEYhmGWC8sqppFhGIZhGIaZDCwaGYZhGIZhmIGwaGQYhmEYhmEGwqKRYRiGYRiGGQiLRoZhGIZhGGYgLBoZhmEYhmGYgbBoZBiGYRiGYQbCopFhGIZhGIYZCItGhmEYhmEYZiAsGhmGYRiGYZiBsGhkGIZhGIZhBsKikWEYhmEYhhnI/w8/cAEC7DNa9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(figsize=(10 ,10))\n", + "plt.imshow(indicator, vmin=0, vmax=20, cmap=\"RdYlBu_r\")\n", + "ax.set_title(\"Average Temperature (Historical 1995-2015)\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.1" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +}