-
Notifications
You must be signed in to change notification settings - Fork 1
/
fund_agent.py
executable file
·136 lines (112 loc) · 3.81 KB
/
fund_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 28 18:44:40 2020
@author: trentc
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from scipy import stats
def get_data():
df = pd.read_csv("trentOutput/bitcoin.csv")
N = df.shape[1]
true_price = np.zeros((N+1,6))
mu = np.zeros((N,6))
sigma = np.zeros((N,6))
n = 0
for name in ["bitcoin","dash","ethereum","litecoin","monero","ripple"]:
df = pd.read_csv("input_12mo/"+name+".csv")
true_price[:,n] = df["Close"][-N-1:]
df = pd.read_csv("trentOutput/"+name+".csv")
mu[:,n] = np.mean(df, axis=0)
sigma[:,n] = np.std(df, axis=0)
n+=1
true_chg = true_price[1:] / true_price[:-1,:] - 1
est_chg = mu / true_price[:-1,:] - 1
est_sig = sigma / true_price[:-1,:]
return true_price, true_chg, est_chg, est_sig
########################################################
def calc_dist(u, s):
maxNdx = np.argmax(u)
mu_delta = u - u[maxNdx]
sigma_delta = np.sqrt(s**2 + s[maxNdx]**2)
P_best = stats.norm(0,1).cdf(mu_delta/sigma_delta) # Pr{largest return}
if len(u)>1: P_best[maxNdx] = 1-np.sort(P_best)[-2]
weighted_P_largest = P_best * u
W = weighted_P_largest / sum(weighted_P_largest)
return W
######################################################
true_price, true_chg, est_chg, est_sig = get_data()
P_lose = stats.norm(est_chg, est_sig).cdf(0)
risk_thold = 0.25 # if P_loose > this, sell it
gain_thold = 0.005 # if est gain is < this, sell it
acct_balance = true_price[0,0] + np.zeros(len(true_price))
day_chg = np.zeros(len(est_chg))
for day in range(len(est_chg)):
W = np.zeros((6,1))
idx = (P_lose[day,:] < risk_thold) & (est_chg[day,:] > gain_thold)
if any(idx):
W[idx,0] = calc_dist(est_chg[day,idx], est_sig[day,idx])
day_chg[day] = np.matmul(W.T, true_chg[day,:]) + 1
acct_balance[day+1] = acct_balance[day] * day_chg[day]
else:
# sell all investments and hold for 0% change
acct_balance[day+1] = acct_balance[day]
plt.plot(true_price[:,0],'.-',label="BTC");
plt.plot(acct_balance,'.-',label="JKIT"); plt.grid()
plt.legend()
"""
x = np.linspace(0,0.1,500)
for k in range(6):
plt.plot(x*100 , stats.norm(est_chg[day,k],est_sig[day,k]).pdf(x))
"""
#########################################################
"""
x[k-1] = [x1 , x2 ; x3 ; x4]
x[k] = [x2 , x3 , x4 , x4-x3+x4]
F = 0 1 0 0
0 0 1 0
0 0 0 1
0 0 -1 2
z = y_pred
Y_pred = np.array([[-0.75365889, -0.65518671, -0.67831546, -0.69850153],
[-0.7120828 , -0.63446337, -0.65418303, -0.64578646],
[-0.62045223, -0.57979047, -0.59247988, -0.58455998],
[-0.50804281, -0.49607569, -0.49490774, -0.43317083]])
F = np.array([[0,1,0,0],[0,0,1,0],[0,0,0,1],[0,0,-1,2]])
Q = np.eye(4) * 0.05**2 # prediction
R = np.diag([0.01 , 0.02 , 0.03 , 0.04])**2
P = np.eye(4)
I = np.eye(4)
xold = y_pred[0,:,0,0]
#xhat = np.matmul(F, xold)
P = np.matmul(np.matmul(F,P), F.T) + Q
#z = y_pred[1,:,0,0]
#yhat = z - xhat
S = P + R
K = np.linalg.solve(S, P)
#x = xhat + np.matmul(K, yhat)
Pnew = (I-K) + P
#########################################
d = np.zeros((Ntest+3,Ntest)); s = d.copy()
yNdx = np.arange(4)
for k in range(0,Ntest):
d[k+yNdx,k] = np.mean(y_pred[k,:,:,0],axis=1)
s[k+yNdx,k] = np.std(y_pred[k,:,:,0],axis=1)
g = np.zeros((len(d), 4-1))
gs = np.zeros((len(d), 4-1))
for k in range(len(d)):
start = max(0,k-3)
col = np.arange(start,min(len(d),min(k+1,Ntest)))
if len(col)>1:
g[k,0:len(col)-1] = np.diff(d[k,col])
for kn in range(len(col)-1):
gs[k,kn] = np.sqrt(s[k,col[kn]]**2 + s[k,col[kn+1]]**2)
else:
g[k,0] = 0; gs[k,0] = 0
plt.subplot(2,1,2)
plt.plot(g,'.-')
w = np.array([0.2 , 0.3 , 0.5])
plt.plot(np.matmul(g,w),'*-'); plt.grid()
"""