-
Notifications
You must be signed in to change notification settings - Fork 0
/
style_transfer.py
153 lines (116 loc) · 4.41 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import torch
import torchvision
import torchvision.transforms as T
import PIL
import numpy as np
SQUEEZENET_MEAN = np.array([0.485, 0.456, 0.406], dtype=np.float32)
SQUEEZENET_STD = np.array([0.229, 0.224, 0.225], dtype=np.float32)
def preprocess(img, size=512):
transform = T.Compose([
T.Resize(size),
T.ToTensor(),
T.Normalize(mean=SQUEEZENET_MEAN.tolist(),
std=SQUEEZENET_STD.tolist()),
T.Lambda(lambda x: x[None]),
])
return transform(img)
def deprocess(img):
transform = T.Compose([
T.Lambda(lambda x: x[0]),
T.Normalize(mean=[0, 0, 0], std=[1.0 / s for s in SQUEEZENET_STD.tolist()]),
T.Normalize(mean=[-m for m in SQUEEZENET_MEAN.tolist()], std=[1, 1, 1]),
T.Lambda(rescale),
T.ToPILImage(),
])
return transform(img)
def rescale(x):
low, high = x.min(), x.max()
x_rescaled = (x - low) / (high - low)
return x_rescaled
def rel_error(x,y):
return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
def features_from_img(imgpath, imgsize):
img = preprocess(PIL.Image.open(imgpath), size=imgsize)
img_var = img.type(dtype)
return extract_features(img_var, cnn), img_var
dtype = torch.FloatTensor
cnn = torchvision.models.squeezenet1_1(pretrained=True).features
cnn.type(dtype)
for param in cnn.parameters():
param.requires_grad = False
def extract_features(x, cnn):
features = []
prev_feat = x
for i, module in enumerate(cnn._modules.values()):
next_feat = module(prev_feat)
features.append(next_feat)
prev_feat = next_feat
return features
def content_loss(content_weight, content_current, content_original):
loss = content_weight * ((content_current-content_original).pow(2).sum())
return loss
def gram_matrix(features, normalize=True):
N,C,H,W = features.shape
F1 = torch.reshape(features,(N,C,H*W)) #N,C,H*W
F2 = F1.permute(0,2,1) #N,H*W,C
gram = F1.matmul(F2)
if normalize:
gram = gram/(H*W*C)
return gram
def style_loss(feats, style_layers, style_targets, style_weights):
loss = torch.zeros([1])
for i in range(len(style_layers)):
curr_style = feats[style_layers[i]]
w_i = style_weights[i]
loss += w_i*((gram_matrix(curr_style)-style_targets[i]).pow(2).sum())
return loss
def tv_loss(img, tv_weight):
vertical = tv_weight * ((img[:,:,1:,:]-img[:,:,:-1,:]).pow(2).sum())
horiz = tv_weight * ((img[:,:,:,1:]-img[:,:,:,:-1]).pow(2).sum())
return (vertical+horiz)
def style_transfer(content_image, style_image, image_size, style_size, content_layer, content_weight,
style_layers, style_weights, tv_weight, init_random = False):
content_img = preprocess(PIL.Image.open(content_image), size=image_size)
content_feats = extract_features(content_img, cnn)
content_target = content_feats[content_layer].clone()
style_img = preprocess(PIL.Image.open(style_image), size=style_size)
style_feats = extract_features(style_img, cnn)
style_targets = []
for idx in style_layers:
style_targets.append(gram_matrix(style_feats[idx].clone()))
if init_random:
img = torch.Tensor(content_img.size()).uniform_(0, 1).type(dtype)
else:
img = content_img.clone().type(dtype)
img.requires_grad_()
initial_lr = 3.0
decayed_lr = 0.1
decay_lr_at = 180
optimizer = torch.optim.Adam([img], lr=initial_lr)
for t in range(200):
if t < 190:
img.data.clamp_(-1.5, 1.5)
optimizer.zero_grad()
img_feats = extract_features(img, cnn)
c_loss = content_loss(content_weight, img_feats[content_layer], content_target)
s_loss = style_loss(img_feats, style_layers, style_targets, style_weights)
t_loss = tv_loss(img, tv_weight)
loss = c_loss + s_loss + t_loss
loss.backward()
if t == decay_lr_at:
optimizer = torch.optim.Adam([img], lr=decayed_lr)
optimizer.step()
img = deprocess(img.data.cpu())
img.save('style_transfer_out.png')
params1 = {
'content_image' : 'content.jpg',
'style_image' : 'style.jpg',
'image_size' : 192,
'style_size' : 512,
'content_layer' : 3,
'content_weight' : 5e-2,
'style_layers' : (1, 4, 6, 7),
'style_weights' : (20000, 500, 12, 1),
'tv_weight' : 5e-2
}
style_transfer(**params1)