forked from danielgordon10/re3-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_net.py
221 lines (183 loc) · 7.82 KB
/
test_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import cv2
import numpy as np
import os
import time
import json
import sys
sys.path.append(os.path.abspath(os.path.join(
os.path.dirname(__file__), os.path.pardir)))
from re3_utils.util import bb_util
from re3_utils.util import im_util
from re3_utils.util.drawing import *
from re3_utils.util.IOU import *
import get_datasets
from tracker import re3_tracker
from constants import CROP_PAD
from constants import CROP_SIZE
from constants import MAX_TRACK_LENGTH
# Display constants
from constants import OUTPUT_WIDTH
from constants import OUTPUT_HEIGHT
from constants import PADDING
from constants import GPU_ID
NUM_COLS = 1
NUM_ROWS = 1
BORDER = 0
FPS = 30
PRINT = True
np.set_printoptions(precision=6)
np.set_printoptions(suppress=True)
class TestTrackerRunner(object):
def __init__(self, tracker):
self.tracker = tracker
self.imageNames = None
self.totalIou = 0
self.numFrames = 0
self.ignoreFrames = 0
self.initializeFrames = 0
self.lostTarget = 0
self.initialize = True
self.gt = None
self.display = False
def reset(self):
self.tracker.reset()
self.imageNames = None
self.totalIou = 0
self.numFrames = 0
self.ignoreFrames = 0
self.initializeFrames = 0
self.lostTarget = 0
self.initialize = True
self.gt = None
self.display = False
def run_test(self, record=False, fancy_text=False, maxCount=-1, skipCount=0, mode='val',
dataset='imagenet_video', video_sample_rate=1, display=True):
data = get_datasets.get_data_for_dataset(dataset, mode)
self.gt = data['gt']
self.display = display
self.imageNames = data['image_paths']
sample_inds = np.where(self.gt[:,4] % video_sample_rate == 0)[0]
self.gt = self.gt[sample_inds, :]
numImages = self.gt.shape[0]
imageNums = self.gt[:, 6].astype(int)
if maxCount == -1:
maxCount = numImages - skipCount
print('Testing', numImages, 'frames')
# Set up global data holders
imOn = skipCount
if record:
tt = time.localtime()
import imageio
writer = imageio.get_writer('./video_%02d_%02d_%02d_%02d_%02d.mp4' %
(tt.tm_mon, tt.tm_mday, tt.tm_hour, tt.tm_min, tt.tm_sec), fps=FPS)
if self.display:
cv2.namedWindow('Output')
maxIter = min(maxCount + skipCount, numImages)
for imOn in range(skipCount, maxIter):
if self.display:
plots, titles, results = self.runFrame(imageNums[int(imOn)], int(imOn))
im = subplot(plots, NUM_ROWS, NUM_COLS, titles=titles,
outputWidth=OUTPUT_WIDTH, outputHeight=OUTPUT_HEIGHT,
border=BORDER, fancy_text=fancy_text)
cv2.imshow('Output', im)
waitKey = cv2.waitKey(1)
if record:
if imOn % 100 == 0:
print(imOn)
writer.append_data(im[:,:,::-1])
else:
results = self.runFrame(imageNums[int(imOn)], int(imOn))
if PRINT and imOn % 1000 == 0:
print('Results: ' + str([key + ' : ' + str(results[key]) for key in sorted(results.keys())]))
print('Final Results: ' + str([key + ' : ' + str(results[key]) for key in sorted(results.keys())]))
if record:
writer.close()
with open('results.json', 'w') as f:
json.dump(results, f, indent=2)
return results
def runFrame(self, imOn, gtOn):
titles = []
if (gtOn == 0 or not (
self.gt[gtOn, 4] == self.gt[gtOn - 1, 4] and
self.gt[gtOn, 5] == self.gt[gtOn - 1, 5] and
self.gt[gtOn, 6] - 1 == self.gt[gtOn - 1, 6])):
if PRINT:
print('beginning sequence', self.gt[gtOn, [5, 6]])
# Clear the state if a new sequence has started.
self.initialize = True
self.ignoreFrames = 0
self.initializeFrames = 0
iou = 1
robustness = 1
gtBox = self.gt[gtOn, :4].copy()
if self.display:
inputImageBGR = cv2.imread(self.imageNames[imOn])
inputImage = inputImageBGR[:,:,::-1]
imageToDraw = inputImageBGR.copy()
drawRect(imageToDraw, gtBox, PADDING * 2, [0, 255, 0])
else:
inputImage = self.imageNames[imOn]
if self.ignoreFrames > 0:
self.ignoreFrames -= 1
else:
if self.initialize:
outputBox = self.tracker.track('test_track', inputImage, gtBox)
self.initialize = False
else:
outputBox = self.tracker.track('test_track', inputImage)
if self.display:
drawRect(imageToDraw, outputBox, PADDING, [0, 0, 255])
if self.initializeFrames == 0:
iou = IOU(outputBox, gtBox)
self.totalIou += iou
if iou == 0:
self.ignoreFrames = 5
self.initializeFrames = 10
self.lostTarget += 1
self.initialize = True
self.numFrames += 1
robustness = np.exp(-30.0 * self.lostTarget / self.numFrames)
else:
self.initializeFrames -= 1
meanIou = self.totalIou * 1.0 / max(self.numFrames, 1)
if self.display:
imageToDraw[0,0] = 255
imageToDraw[0,1] = 0
titles.append(
'Frame %d, IOU %.2f, Mean IOU %.2f, Robustness %.2f, Dropped %d' %
(gtOn, iou, meanIou, robustness, self.lostTarget))
imPlots = [imageToDraw]
results = {
'gtOn' : gtOn,
'meanIou' : meanIou,
'robustness' : robustness,
'lostTarget' : self.lostTarget,
}
if self.display:
return (imPlots, titles, results)
else:
return results
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Show the Network Results.')
parser.add_argument('-r', '--record', action='store_true', default=False)
parser.add_argument('-f', '--fancy_text', action='store_true', default=False,
help='Use a fancier font than OpenCVs, but takes longer to render an image.'
'This should be used for making higher-quality videos.')
parser.add_argument('-n', '--max_images', action='store', default=-1, dest='maxCount', type=int)
parser.add_argument('-s', '--num_images_to_skip', action='store', default=0, dest='skipCount', type=int)
parser.add_argument('-m', '--mode', action='store', default='val', type=str, help='train or val')
parser.add_argument('--dataset', default='imagenet_video', type=str, help='name of the dataset')
parser.add_argument('--video_sample_rate', default=1, type=int,
help='One of every n videos will be run. Useful for testing portions of larger datasets.')
parser.add_argument('-v', '--cuda_visible_devices', type=str, default=str(GPU_ID), help='Device number or string')
feature_parser = parser.add_mutually_exclusive_group(required=False)
feature_parser.add_argument('--display', dest='display', action='store_true')
feature_parser.add_argument('--no-display', dest='display', action='store_false')
parser.set_defaults(display=True)
FLAGS = parser.parse_args()
tracker = re3_tracker.Re3Tracker(FLAGS.cuda_visible_devices)
test_track_runner = TestTrackerRunner(tracker)
test_track_runner.run_test(record=FLAGS.record, fancy_text=FLAGS.fancy_text,
maxCount=FLAGS.maxCount, skipCount=FLAGS.skipCount, mode=FLAGS.mode,
dataset=FLAGS.dataset, video_sample_rate=FLAGS.video_sample_rate, display=FLAGS.display)