-
Notifications
You must be signed in to change notification settings - Fork 19
/
dadiAnalysis.py
executable file
·270 lines (221 loc) · 10.8 KB
/
dadiAnalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
#!/usr/bin/env python
import sys
import argparse
from Bio.Phylo.PAML.chi2 import cdf_chi2
import numpy
from numpy import array
import dadi
from math import *
import cmath
def get_args():
# parse command line arguments
parser = argparse.ArgumentParser(description='Run dadi analysis')
parser.add_argument("sfs", help="SFS in dadi format",
type=argparse.FileType('r'))
parser.add_argument("-f", "--fold", help="Fold the SFS before analysis",
action="store_true")
return parser.parse_args()
def likelihood_grid(function, data, ns, pts_l, func_name):
outfile = open("likelihood_grid_{0}.txt".format(func_name), "w")
outfile.write("nu\tT\tLL\n")
for T in numpy.arange(0.001, 1, 0.01):
for nu in numpy.arange(0.001, 50, 1):
params = array([nu, T])
model = function(params, ns, pts_l)
ll = dadi.Inference.ll_multinom(model, data)
outfile.write("%f\t%f\t%f\n" % (nu, T, ll))
outfile.close()
def likelihood_grid_bottleneck(function, data, ns, pts_l, func_name):
outfile = open("likelihood_grid_{0}.txt".format(func_name), "w")
outfile.write("nuB\tnuF\tTB\tTF\tLL\n")
for TF in numpy.arange(0.001, 1, 0.01):
for TB in numpy.arange(0.001, 1, 0.01):
for nuF in numpy.arange(0.001, 50, 1):
for nuB in numpy.arange(0.001, 50, 1):
params = array([nuB,nuF,TB,TF])
model = function(params, ns, pts_l)
ll = dadi.Inference.ll_multinom(model, data)
outfile.write("%f\t%f\t%f\t%f\t%f\n" % (nuB, nuF, TB, TF, ll))
outfile.close()
def likelihood_grid_bottlegrowth(function, data, ns, pts_l, func_name):
outfile = open("likelihood_grid_{0}.txt".format(func_name), "w")
outfile.write("nuB\tnuF\tTF\tLL\n")
for TF in numpy.arange(0.001, 1, 0.01):
for nuF in numpy.arange(0.001, 50, 1):
for nuB in numpy.arange(0.001, 50, 1):
params = array([nuB,nuF,TF])
model = function(params, ns, pts_l)
ll = dadi.Inference.ll_multinom(model, data)
outfile.write("%f\t%f\t%f\t%f\n" % (nuB, nuF, TF, ll))
outfile.close()
args = get_args()
data = dadi.Spectrum.from_file(args.sfs)
ns = data.sample_sizes
if args.fold:
data = data.fold()
print "Number of samples: %s" % ns
thetaW = data.Watterson_theta()
print "Watterson's theta: %f" % thetaW
pi = data.pi()
print "Pi: %f" % pi
D = data.Tajima_D()
print "Tajima's D: %f" % D
pts_l = [110,120,130] # grid point settings
AIC_stats = []
# Neutral model
neutral_func = dadi.Demographics1D.snm
neutral_params = array([])
neutral_upper_bound = []
neutral_func_ex = dadi.Numerics.make_extrap_log_func(neutral_func)
neutral_model = neutral_func_ex(neutral_params, ns, pts_l)
neutral_ll = dadi.Inference.ll_multinom(neutral_model, data)
print "Neutral model log-likelihood: %f" % neutral_ll
# Instantaneous expansion model
expansion_func = dadi.Demographics1D.two_epoch
# params are nu: ratio of population size & T: time that change happened
expansion_params = array([2,0.05])
expansion_upper_bound = [100, 10]
expansion_lower_bound = [1e-2, 0]
expansion_func_ex = dadi.Numerics.make_extrap_log_func(expansion_func)
expansion_model = expansion_func_ex(expansion_params, ns, pts_l)
expansion_ll = dadi.Inference.ll_multinom(expansion_model, data)
print "Expansion model log-likelihood: %f" % expansion_ll
expansion_p0 = dadi.Misc.perturb_params(expansion_params, fold=1,
upper_bound = expansion_upper_bound)
expansion_popt = dadi.Inference.optimize_log(expansion_p0, data,
expansion_func_ex, pts_l,
lower_bound = expansion_lower_bound,
upper_bound = expansion_upper_bound,
maxiter=100)
print "Optimized parameters", repr(expansion_popt)
expansion_model = expansion_func_ex(expansion_popt, ns, pts_l)
expansion_ll_opt = dadi.Inference.ll_multinom(expansion_model, data)
print "Optimized log-likelihood:", expansion_ll_opt
k = len(expansion_params)
expansion_AIC = 2 * k - 2 * expansion_ll_opt
print "AIC:", expansion_AIC
AIC_stats.append(expansion_AIC)
# Exponential growth model
growth_func = dadi.Demographics1D.growth
# params are nu: ratio of population size & T: time that change happened
growth_params = array([2,0.05])
growth_upper_bound = [100, 10]
growth_lower_bound = [1e-2, 0]
growth_func_ex = dadi.Numerics.make_extrap_log_func(growth_func)
growth_model = growth_func_ex(growth_params, ns, pts_l)
growth_ll = dadi.Inference.ll_multinom(growth_model, data)
print "Exponential growth model log-likelihood: %f" % growth_ll
growth_p0 = dadi.Misc.perturb_params(growth_params, fold=1,
upper_bound = growth_upper_bound)
growth_popt = dadi.Inference.optimize_log(growth_p0, data,
growth_func_ex, pts_l,
lower_bound = growth_lower_bound,
upper_bound = growth_upper_bound,
maxiter=100)
print "Optimized parameters", repr(growth_popt)
growth_model = growth_func_ex(growth_popt, ns, pts_l)
growth_ll_opt = dadi.Inference.ll_multinom(growth_model, data)
print "Optimized log-likelihood:", growth_ll_opt
k = len(growth_params)
growth_AIC = (2 * k) - (2 * growth_ll_opt)
print "AIC:", growth_AIC
AIC_stats.append(growth_AIC)
# Bottleneck model
bottleneck_func = dadi.Demographics1D.three_epoch
# Params are nuB,nuF,TB,TF; nuB: Ratio of bottleneck population size to ancient pop size, nuF: Ratio of contemporary to ancient pop size,
# TB: Length of bottleneck and TF: Time since bottleneck recovery
bottleneck_params = array([2,2,0.05,0.05])
bottleneck_upper_bound = [100, 100, 10, 10]
bottleneck_lower_bound = [1e-2, 1e-2, 0, 0]
bottleneck_func_ex = dadi.Numerics.make_extrap_log_func(bottleneck_func)
bottleneck_model = bottleneck_func_ex(bottleneck_params, ns, pts_l)
bottleneck_ll = dadi.Inference.ll_multinom(bottleneck_model, data)
print "Bottleneck model log-likelihood: %f" % bottleneck_ll
bottleneck_p0 = dadi.Misc.perturb_params(bottleneck_params, fold=1,
upper_bound = bottleneck_upper_bound)
bottleneck_popt = dadi.Inference.optimize_log(bottleneck_p0, data,
bottleneck_func_ex, pts_l,
lower_bound = bottleneck_lower_bound,
upper_bound = bottleneck_upper_bound,
maxiter=100)
print "Optimized parameters", repr(bottleneck_popt)
bottleneck_model = bottleneck_func_ex(bottleneck_popt, ns, pts_l)
bottleneck_ll_opt = dadi.Inference.ll_multinom(bottleneck_model, data)
print "Optimized log-likelihood:", bottleneck_ll_opt
k = len(bottleneck_params)
bottleneck_AIC = 2 * k - 2 * bottleneck_ll_opt
print "AIC:", bottleneck_AIC
AIC_stats.append(bottleneck_AIC)
# Bottlegrowth model
bottlegrowth_func = dadi.Demographics1D.bottlegrowth
# Params are nuB,nuF,T; nuB
bottlegrowth_params = array([2,2,0.05])
bottlegrowth_upper_bound = [100, 100, 10]
bottlegrowth_lower_bound = [1e-2, 1e-2, 0]
bottlegrowth_func_ex = dadi.Numerics.make_extrap_log_func(bottlegrowth_func)
bottlegrowth_model = bottlegrowth_func_ex(bottlegrowth_params, ns, pts_l)
bottlegrowth_ll = dadi.Inference.ll_multinom(bottlegrowth_model, data)
print "Bottlegrowth model log-likelihood: %f" % bottlegrowth_ll
bottlegrowth_p0 = dadi.Misc.perturb_params(bottlegrowth_params, fold=1,
upper_bound = bottlegrowth_upper_bound)
bottlegrowth_popt = dadi.Inference.optimize_log(bottlegrowth_p0, data,
bottlegrowth_func_ex, pts_l,
lower_bound = bottlegrowth_lower_bound,
upper_bound = bottlegrowth_upper_bound,
maxiter=100)
print "Optimized parameters", repr(bottlegrowth_popt)
bottlegrowth_model = bottlegrowth_func_ex(bottlegrowth_popt, ns, pts_l)
bottlegrowth_ll_opt = dadi.Inference.ll_multinom(bottlegrowth_model, data)
print "Optimized log-likelihood:", bottlegrowth_ll_opt
k = len(bottlegrowth_params)
bottlegrowth_AIC = 2 * k - 2 * bottlegrowth_ll_opt
print "AIC:", bottlegrowth_AIC
AIC_stats.append(bottlegrowth_AIC)
# Output SFS for data
data_sfs_file = open("observedSFS.txt", "w")
for i in range(1,len(data)-1):
data_sfs_file.write(str(data[i]) + '\n')
data_sfs_file.close()
# Output SFS for neutral model
neutral_sfs = dadi.Inference.optimally_scaled_sfs(neutral_model, data)
neutral_sfs_file = open("neutralModelSFS.txt", 'w')
for i in range(1,len(neutral_sfs)-1):
neutral_sfs_file.write(str(neutral_sfs[i]) + '\n')
neutral_sfs_file.close()
# Output SFS for expansion model
expansion_sfs = dadi.Inference.optimally_scaled_sfs(expansion_model, data)
expansion_sfs_file = open("expansionModelSFS.txt", 'w')
for i in range(1,len(expansion_sfs)-1):
expansion_sfs_file.write(str(expansion_sfs[i]) + '\n')
expansion_sfs_file.close()
# Output SFS for growth model
growth_sfs = dadi.Inference.optimally_scaled_sfs(growth_model, data)
growth_sfs_file = open("growthModelSFS.txt", 'w')
for i in range(1,len(growth_sfs)-1):
growth_sfs_file.write(str(growth_sfs[i]) + '\n')
growth_sfs_file.close()
# Output SFS for bottleneck model
bottleneck_sfs = dadi.Inference.optimally_scaled_sfs(bottleneck_model, data)
bottleneck_sfs_file = open("bottleneckModelSFS.txt", 'w')
for i in range(1,len(bottleneck_sfs)-1):
bottleneck_sfs_file.write(str(bottleneck_sfs[i]) + '\n')
bottleneck_sfs_file.close()
# Output SFS for bottlegrowth model
bottlegrowth_sfs = dadi.Inference.optimally_scaled_sfs(bottlegrowth_model, data)
bottlegrowth_sfs_file = open("bottlegrowthModelSFS.txt", 'w')
for i in range(1,len(bottlegrowth_sfs)-1):
bottlegrowth_sfs_file.write(str(bottlegrowth_sfs[i]) + '\n')
bottlegrowth_sfs_file.close()
min_AIC = min(AIC_stats)
if min_AIC == expansion_AIC:
print "Best fitting model: Expansion. Working on likelihood surface..."
likelihood_grid(expansion_func_ex, data, ns, pts_l, "expansion")
if min_AIC == growth_AIC:
print "Best fitting model: Growth. Working on likelihood surface..."
likelihood_grid(growth_func_ex, data, ns, pts_l, "growth")
if min_AIC == bottleneck_AIC:
print "Best fitting model: Bottleneck. Working on likelihood surface..."
likelihood_grid_bottleneck(bottleneck_func_ex, data, ns, pts_l, "bottlneck")
if min_AIC == bottlegrowth_AIC:
print "Best fitting model: Bottlegrowth. Working on likelihood surface..."
likelihood_grid_bottlegrowth(bottlegrowth_func_ex, data, ns, pts_l, "bottlegrowth")