-
Notifications
You must be signed in to change notification settings - Fork 19
/
dadi_expansionBootstrap.py
executable file
·62 lines (46 loc) · 1.96 KB
/
dadi_expansionBootstrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
import sys
import numpy
from numpy import array
import dadi
def usage():
print "dadi_boostrapExpansion.py <input file> <output file>"
def likelihood_grid(function, data, ns, pts_l):
outfile = open("likelihood_grid.txt", "w")
outfile.write("nu\tT\tLL\n")
for T in numpy.arange(0.001, 10, .1):
for nu in numpy.arange(0.001, 10, .1):
params = array([nu, T])
model = function(params, ns, pts_l)
ll = dadi.Inference.ll_multinom(model, data)
outfile.write("%f\t%f\t%f\n" % (nu, T, ll))
outfile.close()
if len(sys.argv) != 3:
usage()
sys.exit()
infile = sys.argv[1]
outfile = open(sys.argv[2], "w")
data = dadi.Spectrum.from_file(infile)
ns = data.sample_sizes
pts_l = [10,20,30] # grid point settings
# Instantaneous expansion model
expansion_func = dadi.Demographics1D.two_epoch
# params are nu: ratio of population size & T: time that change happened
expansion_params = array([2,0.05])
expansion_upper_bound = [100, 10]
expansion_lower_bound = [1e-2, 0]
expansion_func_ex = dadi.Numerics.make_extrap_log_func(expansion_func)
expansion_model = expansion_func_ex(expansion_params, ns, pts_l)
expansion_ll = dadi.Inference.ll_multinom(expansion_model, data)
expansion_p0 = dadi.Misc.perturb_params(expansion_params, fold=1,
upper_bound = expansion_upper_bound)
expansion_popt = dadi.Inference.optimize_log(expansion_p0, data,
expansion_func_ex, pts_l,
lower_bound = expansion_lower_bound,
upper_bound = expansion_upper_bound,
maxiter=3)
expansion_model = expansion_func_ex(expansion_popt, ns, pts_l)
expansion_ll_opt = dadi.Inference.ll_multinom(expansion_model, data)
outfile.write("%f\t%f\t%f\n" % (expansion_popt[0], expansion_popt[1],
expansion_ll_opt))
outfile.close()