-
Notifications
You must be signed in to change notification settings - Fork 122
/
presignature.go
119 lines (107 loc) · 3.32 KB
/
presignature.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
package ecdsa
import (
"errors"
"fmt"
"github.com/taurusgroup/multi-party-sig/internal/types"
"github.com/taurusgroup/multi-party-sig/pkg/math/curve"
"github.com/taurusgroup/multi-party-sig/pkg/party"
)
type PreSignature struct {
// ID is a random identifier for this specific presignature.
ID types.RID
// R = δ⁻¹⋅Γ = δ⁻¹⋅(∑ⱼ Γⱼ) = (∑ⱼδ⁻¹γⱼ)⋅G = k⁻¹⋅G
R curve.Point
// RBar[j] = δ⁻¹⋅Δⱼ = (δ⁻¹kⱼ)⋅Γ = (k⁻¹kⱼ)⋅G
RBar *party.PointMap
// S[j] = χⱼ⋅R
S *party.PointMap
// KShare = kᵢ
KShare curve.Scalar
// ChiShare = χᵢ
ChiShare curve.Scalar
}
// Group returns the elliptic curve group associated with this PreSignature.
func (sig *PreSignature) Group() curve.Curve {
return sig.R.Curve()
}
// EmptyPreSignature returns a PreSignature with a given group, ready for unmarshalling.
func EmptyPreSignature(group curve.Curve) *PreSignature {
return &PreSignature{
R: group.NewPoint(),
RBar: party.EmptyPointMap(group),
S: party.EmptyPointMap(group),
KShare: group.NewScalar(),
ChiShare: group.NewScalar(),
}
}
// SignatureShare represents an individual additive share of the signature's "s" component.
type SignatureShare = curve.Scalar
// SignatureShare returns this party's share σᵢ = kᵢm+rχᵢ, where s = ∑ⱼσⱼ.
func (sig *PreSignature) SignatureShare(hash []byte) curve.Scalar {
m := curve.FromHash(sig.Group(), hash)
r := sig.R.XScalar()
mk := m.Mul(sig.KShare)
rx := r.Mul(sig.ChiShare)
sigma := mk.Add(rx)
return sigma
}
// Signature combines the given shares σⱼ and returns a pair (R,S), where S=∑ⱼσⱼ.
func (sig *PreSignature) Signature(shares map[party.ID]SignatureShare) *Signature {
s := sig.Group().NewScalar()
for _, sigma := range shares {
s.Add(sigma)
}
return &Signature{
R: sig.R,
S: s,
}
}
// VerifySignatureShares should be called if the signature returned by PreSignature.Signature is not valid.
// It returns the list of parties whose shares are invalid.
func (sig *PreSignature) VerifySignatureShares(shares map[party.ID]SignatureShare, hash []byte) (culprits []party.ID) {
r := sig.R.XScalar()
m := curve.FromHash(sig.Group(), hash)
for j, share := range shares {
Rj, Sj := sig.RBar.Points[j], sig.S.Points[j]
if Rj == nil || Sj == nil {
culprits = append(culprits, j)
continue
}
lhs := share.Act(sig.R)
rhs := m.Act(Rj).Add(r.Act(Sj))
if !lhs.Equal(rhs) {
culprits = append(culprits, j)
}
}
return
}
func (sig *PreSignature) Validate() error {
if len(sig.RBar.Points) != len(sig.S.Points) {
return errors.New("presignature: different number of R,S shares")
}
for id, R := range sig.RBar.Points {
if S, ok := sig.S.Points[id]; !ok || S.IsIdentity() {
return errors.New("presignature: S invalid")
}
if R.IsIdentity() {
return errors.New("presignature: RBar invalid")
}
}
if sig.R.IsIdentity() {
return errors.New("presignature: R is identity")
}
if err := sig.ID.Validate(); err != nil {
return fmt.Errorf("presignature: %w", err)
}
if sig.ChiShare.IsZero() || sig.KShare.IsZero() {
return errors.New("ChiShare or KShare is invalid")
}
return nil
}
func (sig *PreSignature) SignerIDs() party.IDSlice {
ids := make([]party.ID, 0, len(sig.RBar.Points))
for id := range sig.RBar.Points {
ids = append(ids, id)
}
return party.NewIDSlice(ids)
}