You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
java tensorflow and maven version is org.tensorflow:libtensorflow:1.15.0 after session.runner.run() for many times, the memory grow higher and higher then oom
#564
my test code with language scala ,this is one predict, we will predict 100 QPS for a docker
val config = ConfigProto.newBuilder
.putDeviceCount("CPU", Runtime.getRuntime.availableProcessors)
.setInterOpParallelismThreads(8)
.setIntraOpParallelismThreads(8)
.setOperationTimeoutInMs(3000)
.build
val options = RunOptions.newBuilder
.setTimeoutInMs(5000)
.build
val modelBundle = SavedModelBundle
.loader(s"$path")
.withTags("serve")
.withConfigProto(config.toByteArray)
.withRunOptions(options.toByteArray)
.load
val kernel = modelBundle.session
val data = Map("tensor1" -> Seq(0.1f,0.122f),……)
val runner = kernel.runner()
val inputTensorList: util.ArrayList[Tensor[java.lang.Float]] = new util.ArrayList[Tensor[java.lang.Float]]()
data.map{
case (tensorName, featureId) => {
val dataInput:FloatBuffer = FloatBuffer.allocate(featureId.size)
featureId.foreach(featureValue => {
dataInput.put(featureValue)
})
dataInput.asInstanceOf[Buffer].flip()
val tensorShape:Array[Long] = Array(1,featureId.size)
val tensor = Tensor.create(tensorShape,dataInput)
runner.feed(tensorName,tensor)
inputTensorList.add(tensor)
}
}
for(i <- 0 until 2 ){
runner.fetch("StatefulPartitionedCall",i)
}
val output = runner.run.asScala
val scores:Array[Float] = output.map(ten => {
val tensorData: Array[Array[Float]] = ten.copyTo(Array.ofDim[Float](ten.shape()(0).toInt, ten.shape()(1).toInt))
tensorData(0).head
}).toArray
inputTensorList.asScala.foreach(_.close())
output.foreach(_.close())
The text was updated successfully, but these errors were encountered:
Hi @hanfengatonline , it looks like you are still using TensorFlow 1.x and an older version of TF Java. This version is no longer supported, please take a look at the new version based on TensorFlow 2.x in this repo instead.
my test code with language scala ,this is one predict, we will predict 100 QPS for a docker
val config = ConfigProto.newBuilder
.putDeviceCount("CPU", Runtime.getRuntime.availableProcessors)
.setInterOpParallelismThreads(8)
.setIntraOpParallelismThreads(8)
.setOperationTimeoutInMs(3000)
.build
val kernel = modelBundle.session
The text was updated successfully, but these errors were encountered: