-
Notifications
You must be signed in to change notification settings - Fork 5
/
extract_text.py
executable file
·321 lines (256 loc) · 9.47 KB
/
extract_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/python
# Processes an image to extract the text portions. Primarily
# used for pre-processing for performing OCR.
# Based on the paper "Font and Background Color Independent Text Binarization" by
# T Kasar, J Kumar and A G Ramakrishnan
# http://www.m.cs.osakafu-u.ac.jp/cbdar2007/proceedings/papers/O1-1.pdf
# Copyright (c) 2012, Jason Funk <[email protected]>
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software
# and associated documentation files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or substantial
# portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
# LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
# IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
# SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import cv2
import numpy as np
import sys
import os.path
if len(sys.argv) != 3:
print "%s input_file output_file" % (sys.argv[0])
sys.exit()
else:
input_file = sys.argv[1]
output_file = sys.argv[2]
if not os.path.isfile(input_file):
print "No such file '%s'" % input_file
sys.exit()
DEBUG = 0
# Determine pixel intensity
# Apparently human eyes register colors differently.
# TVs use this formula to determine
# pixel intensity = 0.30R + 0.59G + 0.11B
def ii(xx, yy):
global img, img_y, img_x
if yy >= img_y or xx >= img_x:
#print "pixel out of bounds ("+str(y)+","+str(x)+")"
return 0
pixel = img[yy][xx]
return 0.30 * pixel[2] + 0.59 * pixel[1] + 0.11 * pixel[0]
# A quick test to check whether the contour is
# a connected shape
def connected(contour):
first = contour[0][0]
last = contour[len(contour) - 1][0]
return abs(first[0] - last[0]) <= 1 and abs(first[1] - last[1]) <= 1
# Helper function to return a given contour
def c(index):
global contours
return contours[index]
# Count the number of real children
def count_children(index, h_, contour):
# No children
if h_[index][2] < 0:
return 0
else:
#If the first child is a contour we care about
# then count it, otherwise don't
if keep(c(h_[index][2])):
count = 1
else:
count = 0
# Also count all of the child's siblings and their children
count += count_siblings(h_[index][2], h_, contour, True)
return count
# Quick check to test if the contour is a child
def is_child(index, h_):
return get_parent(index, h_) > 0
# Get the first parent of the contour that we care about
def get_parent(index, h_):
parent = h_[index][3]
while not keep(c(parent)) and parent > 0:
parent = h_[parent][3]
return parent
# Count the number of relevant siblings of a contour
def count_siblings(index, h_, contour, inc_children=False):
# Include the children if necessary
if inc_children:
count = count_children(index, h_, contour)
else:
count = 0
# Look ahead
p_ = h_[index][0]
while p_ > 0:
if keep(c(p_)):
count += 1
if inc_children:
count += count_children(p_, h_, contour)
p_ = h_[p_][0]
# Look behind
n = h_[index][1]
while n > 0:
if keep(c(n)):
count += 1
if inc_children:
count += count_children(n, h_, contour)
n = h_[n][1]
return count
# Whether we care about this contour
def keep(contour):
return keep_box(contour) and connected(contour)
# Whether we should keep the containing box of this
# contour based on it's shape
def keep_box(contour):
xx, yy, w_, h_ = cv2.boundingRect(contour)
# width and height need to be floats
w_ *= 1.0
h_ *= 1.0
# Test it's shape - if it's too oblong or tall it's
# probably not a real character
if w_ / h_ < 0.1 or w_ / h_ > 10:
if DEBUG:
print "\t Rejected because of shape: (" + str(xx) + "," + str(yy) + "," + str(w_) + "," + str(h_) + ")" + \
str(w_ / h_)
return False
# check size of the box
if ((w_ * h_) > ((img_x * img_y) / 5)) or ((w_ * h_) < 15):
if DEBUG:
print "\t Rejected because of size"
return False
return True
def include_box(index, h_, contour):
if DEBUG:
print str(index) + ":"
if is_child(index, h_):
print "\tIs a child"
print "\tparent " + str(get_parent(index, h_)) + " has " + str(
count_children(get_parent(index, h_), h_, contour)) + " children"
print "\thas " + str(count_children(index, h_, contour)) + " children"
if is_child(index, h_) and count_children(get_parent(index, h_), h_, contour) <= 2:
if DEBUG:
print "\t skipping: is an interior to a letter"
return False
if count_children(index, h_, contour) > 2:
if DEBUG:
print "\t skipping, is a container of letters"
return False
if DEBUG:
print "\t keeping"
return True
# Load the image
orig_img = cv2.imread(input_file)
# Add a border to the image for processing sake
img = cv2.copyMakeBorder(orig_img, 50, 50, 50, 50, cv2.BORDER_CONSTANT)
# Calculate the width and height of the image
img_y = len(img)
img_x = len(img[0])
if DEBUG:
print "Image is " + str(len(img)) + "x" + str(len(img[0]))
#Split out each channel
blue, green, red = cv2.split(img)
# Run canny edge detection on each channel
blue_edges = cv2.Canny(blue, 200, 250)
green_edges = cv2.Canny(green, 200, 250)
red_edges = cv2.Canny(red, 200, 250)
# Join edges back into image
edges = blue_edges | green_edges | red_edges
# Find the contours
contours, hierarchy = cv2.findContours(edges.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
hierarchy = hierarchy[0]
if DEBUG:
processed = edges.copy()
rejected = edges.copy()
# These are the boxes that we are determining
keepers = []
# For each contour, find the bounding rectangle and decide
# if it's one we care about
for index_, contour_ in enumerate(contours):
if DEBUG:
print "Processing #%d" % index_
x, y, w, h = cv2.boundingRect(contour_)
# Check the contour and it's bounding box
if keep(contour_) and include_box(index_, hierarchy, contour_):
# It's a winner!
keepers.append([contour_, [x, y, w, h]])
if DEBUG:
cv2.rectangle(processed, (x, y), (x + w, y + h), (100, 100, 100), 1)
cv2.putText(processed, str(index_), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255))
else:
if DEBUG:
cv2.rectangle(rejected, (x, y), (x + w, y + h), (100, 100, 100), 1)
cv2.putText(rejected, str(index_), (x, y - 5), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255))
# Make a white copy of our image
new_image = edges.copy()
new_image.fill(255)
boxes = []
# For each box, find the foreground and background intensities
for index_, (contour_, box) in enumerate(keepers):
# Find the average intensity of the edge pixels to
# determine the foreground intensity
fg_int = 0.0
for p in contour_:
fg_int += ii(p[0][0], p[0][1])
fg_int /= len(contour_)
if DEBUG:
print "FG Intensity for #%d = %d" % (index_, fg_int)
# Find the intensity of three pixels going around the
# outside of each corner of the bounding box to determine
# the background intensity
x_, y_, width, height = box
bg_int = \
[
# bottom left corner 3 pixels
ii(x_ - 1, y_ - 1),
ii(x_ - 1, y_),
ii(x_, y_ - 1),
# bottom right corner 3 pixels
ii(x_ + width + 1, y_ - 1),
ii(x_ + width, y_ - 1),
ii(x_ + width + 1, y_),
# top left corner 3 pixels
ii(x_ - 1, y_ + height + 1),
ii(x_ - 1, y_ + height),
ii(x_, y_ + height + 1),
# top right corner 3 pixels
ii(x_ + width + 1, y_ + height + 1),
ii(x_ + width, y_ + height + 1),
ii(x_ + width + 1, y_ + height)
]
# Find the median of the background
# pixels determined above
bg_int = np.median(bg_int)
if DEBUG:
print "BG Intensity for #%d = %s" % (index_, repr(bg_int))
# Determine if the box should be inverted
if fg_int >= bg_int:
fg = 255
bg = 0
else:
fg = 0
bg = 255
# Loop through every pixel in the box and color the
# pixel accordingly
for x in range(x_, x_ + width):
for y in range(y_, y_ + height):
if y >= img_y or x >= img_x:
if DEBUG:
print "pixel out of bounds (%d,%d)" % (y, x)
continue
if ii(x, y) > fg_int:
new_image[y][x] = bg
else:
new_image[y][x] = fg
# blur a bit to improve ocr accuracy
new_image = cv2.blur(new_image, (2, 2))
cv2.imwrite(output_file, new_image)
if DEBUG:
cv2.imwrite('edges.png', edges)
cv2.imwrite('processed.png', processed)
cv2.imwrite('rejected.png', rejected)