forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
convert_checkpoint.py
1164 lines (1013 loc) · 46.8 KB
/
convert_checkpoint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import functools
import json
import os
import time
from collections import defaultdict
from pathlib import Path
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import safetensors
import torch
import torch.nn as nn
from tqdm import tqdm
from transformers import BloomConfig, BloomForCausalLM, BloomTokenizerFast
from transformers.models.bloom.modeling_bloom import BloomBlock
from transformers.pytorch_utils import Conv1D
# isort: off
import tensorrt_llm
from tensorrt_llm import logger
from tensorrt_llm.quantization import QuantAlgo, QuantMode
from tensorrt_llm.models.llama.utils import iterate_shard_files, load_state_dict #TODO: move the utils to common dir shared by models
# isort: on
@torch.no_grad()
def apply_smoothing(scales,
gemm_weights,
layernorm_weights=None,
layernorm_bias=None,
dtype=torch.float32,
layernorm_1p=False):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
if layernorm_weights is not None:
assert layernorm_weights.numel() == scales.numel()
layernorm_weights.div_(scales).to(dtype)
if layernorm_bias is not None:
assert layernorm_bias.numel() == scales.numel()
layernorm_bias.div_(scales).to(dtype)
if layernorm_1p:
layernorm_weights += (1 / scales) - 1
for gemm in gemm_weights:
gemm.mul_(scales.view(1, -1)).to(dtype)
@torch.no_grad()
def smooth_gemm(gemm_weights,
act_scales,
layernorm_weights=None,
layernorm_bias=None,
alpha=0.5,
weight_scales=None):
if not isinstance(gemm_weights, list):
gemm_weights = [gemm_weights]
orig_dtype = gemm_weights[0].dtype
for gemm in gemm_weights:
# gemm_weights are expected to be transposed
assert gemm.shape[1] == act_scales.numel()
if weight_scales is None:
weight_scales = torch.cat(
[gemm.abs().max(dim=0, keepdim=True)[0] for gemm in gemm_weights],
dim=0)
weight_scales = weight_scales.max(dim=0)[0]
weight_scales.to(float).clamp(min=1e-5)
scales = (act_scales.to(gemm_weights[0].device).to(float).pow(alpha) /
weight_scales.pow(1 - alpha)).clamp(min=1e-5)
apply_smoothing(scales, gemm_weights, layernorm_weights, layernorm_bias,
orig_dtype)
return scales
@torch.no_grad()
def capture_activation_range(model,
tokenizer,
dataset,
num_samples=512,
seq_len=512):
model.eval()
device = next(model.parameters()).device
act_scales = defaultdict(lambda: {"x": None, "y": None, "w": None})
def stat_tensor(name, tensor, act_scales, key):
hidden_dim = tensor.shape[-1]
tensor = tensor.view(-1, hidden_dim).abs().detach()
comming_max = torch.max(tensor, dim=0)[0].float()
if act_scales[name][key] is None:
act_scales[name][key] = comming_max
else:
act_scales[name][key] = torch.max(act_scales[name][key],
comming_max)
def stat_input_hook(m, x, y, name):
if isinstance(x, tuple):
x = x[0]
stat_tensor(name, x, act_scales, "x")
stat_tensor(name, y, act_scales, "y")
if act_scales[name]["w"] is None:
act_scales[name]["w"] = m.weight.abs().clip(1e-8,
None).max(dim=1)[0]
hooks = []
for name, m in model.named_modules():
if isinstance(m, nn.Linear) or isinstance(m, Conv1D):
hooks.append(
m.register_forward_hook(
functools.partial(stat_input_hook, name=name)))
for i in tqdm(range(num_samples), desc="calibrating model"):
input_ids = tokenizer(dataset[i]["text"],
return_tensors="pt",
max_length=seq_len,
truncation=True).input_ids.to(device)
model(input_ids)
for h in hooks:
h.remove()
return act_scales
def reorder_torch_qkv_weight_or_bias(v, model, is_bias=False):
""" Reorder the qkv weight.
Note that the shape of the fused QKV weights in HF is different from the
shape that TRT-LLM requires.
HF: (num_heads x 3 x head_dim, hidden_size)
TRT-LLM: (3 x num_heads x head_dim, hidden_size)
This is unlike to the other models in HF e.g. GPT where they have the
same shape with TRT-LLM, i.e., (3 x num_heads x head_dim, hidden_size). We reshape the qkv
weight: (3 x num_heads x head_dim, hidden).
bias : (3 x num_heads x head_dim).
"""
n_head = model.transformer.num_heads
hidden_size = model.transformer.embed_dim
head_dim = hidden_size // n_head
# (3 x hidden, ...) view as (num_heads, 3, head_dim, ...)
v = v.reshape(n_head, 3, head_dim, -1)
# permute to (3, num_heads, head_dim, ...)
v = v.permute((1, 0, 2, 3))
# final shape: weight=(3 x hidden, hidden) or bias=(3 x hidden)
if is_bias:
return v.reshape(3 * hidden_size)
return v.reshape(3 * hidden_size, hidden_size)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=Path, default=None)
parser.add_argument('--tp_size',
type=int,
default=1,
help='N-way tensor parallelism size')
parser.add_argument('--pp_size',
type=int,
default=1,
help='N-way pipeline parallelism size')
parser.add_argument('--dtype',
type=str,
default='float16',
choices=['float32', 'bfloat16', 'float16'])
parser.add_argument(
'--use_weight_only',
default=False,
action="store_true",
help='Quantize weights for the various GEMMs to INT4/INT8.'
'See --weight_only_precision to set the precision')
parser.add_argument(
'--weight_only_precision',
const='int8',
type=str,
nargs='?',
default='int8',
choices=['int8', 'int4'],
help=
'Define the precision for the weights when using weight-only quantization.'
'You must also use --use_weight_only for that argument to have an impact.'
)
parser.add_argument(
'--use_parallel_embedding',
action="store_true",
default=False,
help=
'By default embedding parallelism is disabled. By setting this flag, embedding parallelism is enabled'
)
parser.add_argument(
'--embedding_sharding_dim',
type=int,
default=0,
choices=[0, 1],
help=
'By default the embedding lookup table is sharded along vocab dimension (embedding_sharding_dim=0). '
'To shard it along hidden dimension, set embedding_sharding_dim=1'
'Note: embedding sharing is only enabled when embedding_sharding_dim = 0'
)
parser.add_argument(
'--use_embedding_sharing',
action="store_true",
default=False,
help=
'Try to reduce the engine size by sharing the embedding lookup table between two layers.'
'Note: the flag might not take effect when the criteria are not met.')
parser.add_argument('--output_dir',
type=Path,
default='tllm_checkpoint',
help='The path to save the TensorRT-LLM checkpoint')
parser.add_argument(
"--smoothquant",
"-sq",
type=float,
default=None,
help="Set the α parameter (see https://arxiv.org/pdf/2211.10438.pdf)"
" to Smoothquant the model, and output int8 weights."
" A good first try is 0.5. Must be in [0, 1]")
parser.add_argument(
'--per_channel',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor for the GEMM\'s result. '
'per_channel instead uses a different static scaling factor for each channel. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--per_token',
action="store_true",
default=False,
help=
'By default, we use a single static scaling factor to scale activations in the int8 range. '
'per_token chooses at run time, and for each token, a custom scaling factor. '
'The latter is usually more accurate, but a little slower.')
parser.add_argument(
'--int8_kv_cache',
default=False,
action="store_true",
help=
'By default, we use dtype for KV cache. int8_kv_cache chooses int8 quantization for KV'
)
parser.add_argument(
'--workers',
type=int,
default=1,
help='The number of workers to convert checkpoint in parallel')
parser.add_argument('--log_level', type=str, default='info')
args = parser.parse_args()
return args
def generate_int8(weights, act_range, is_qkv=False, multi_query_mode=False):
"""
This function has two purposes:
- compute quantized weights, scaled either per-tensor or per-column
- compute scaling factors
Depending on the GEMM API (CUTLASS/CUBLAS) the required scaling factors differ.
CUTLASS uses two sets of scaling factors. One for the activation X, one for the weight W.
CUBLAS only has one (we can't do per-row scaling). So we must provide pre-multiplied scaling factor.
Here is the list of what we need (T means per-tensor, C per-column):
- scale_x_orig_quant puts fp activation into the quantized range (i.e. [-128, 127], for int8). Used before the GEMM. (T)
- scale_y_quant_orig puts quantized activation into the fp range. Used if the GEMM outputs int8. (T)
- scale_w_quant_orig puts weights from quant range to fp range (used with CUTLASS) (T, C)
- scale_y_accum_quant puts the GEMM result (XW) from accumulation range (int32)
to quant range (int8) (used for CUBLAS) (T, C)
Note that we don't do anything special about row-parallel GEMM. Theoretically, we could have per-GPU scaling factors too,
but then the model would change depending on the number of GPUs used.
For QKV projection, the behavior is special. Even if we have a single matrix to perform QKV projection, we consider it
as three different matrices: Q, K, and V. So per-tensor actually means one scaling factor for each Q, K and V.
For our GEMM implementation to respect this behavior, we use per-column mode and replicate values along columns.
"""
# compute weight scaling factors for fp->int8 and int8->fp
weights = weights.detach().cpu().numpy()
if is_qkv and not multi_query_mode:
scale_w_orig_quant_t = 127. / act_range["w"].reshape(3, -1).max(
dim=-1, keepdims=True)[0].cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].reshape(3,
-1).cpu().numpy()
elif is_qkv and multi_query_mode:
hidden_dim = weights.shape[0]
local_dim = act_range["w"].shape[0]
kv_dim = (local_dim - hidden_dim) // 2
scale_w_q = act_range["w"][0:hidden_dim]
scale_w_k = act_range["w"][hidden_dim:hidden_dim + kv_dim]
scale_w_v = act_range["w"][-kv_dim:]
scale_w_qkv_t = torch.concat([
scale_w_q.max(dim=0, keepdim=True)[0],
scale_w_k.max(dim=0, keepdim=True)[0],
scale_w_v.max(dim=0, keepdim=True)[0]
])
scale_w_orig_quant_t = 127. / scale_w_qkv_t.cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
else:
scale_w_orig_quant_t = 127. / act_range["w"].max().cpu().numpy()
scale_w_orig_quant_c = 127. / act_range["w"].cpu().numpy()
scale_w_quant_orig_t = 1.0 / scale_w_orig_quant_t
scale_w_quant_orig_c = 1.0 / scale_w_orig_quant_c
# compute the rest of needed scaling factors
scale_x_orig_quant_t = np.array(127. / act_range["x"].max().item())
scale_y_orig_quant_t = np.array(127. / act_range["y"].max().item())
scale_y_quant_orig_t = np.array(act_range["y"].max().item() / 127.)
scale_y_accum_quant_t = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_t)
scale_y_accum_quant_c = scale_y_orig_quant_t / (scale_x_orig_quant_t *
scale_w_orig_quant_c)
if is_qkv and not multi_query_mode:
scale_y_accum_quant_t = np.broadcast_to(scale_y_accum_quant_t,
scale_w_orig_quant_c.shape)
scale_w_quant_orig_t = np.broadcast_to(scale_w_quant_orig_t,
scale_w_orig_quant_c.shape)
if is_qkv and multi_query_mode:
scale_q_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[0],
scale_w_q.shape)
scale_k_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[1],
scale_w_k.shape)
scale_v_y_accum_t = np.broadcast_to(scale_y_accum_quant_t[2],
scale_w_v.shape)
scale_y_accum_quant_t = np.concatenate(
[scale_q_y_accum_t, scale_k_y_accum_t, scale_v_y_accum_t])
scale_w_quant_orig_t = np.concatenate([
np.broadcast_to(scale_w_quant_orig_t[0], scale_w_q.shape),
np.broadcast_to(scale_w_quant_orig_t[1], scale_w_k.shape),
np.broadcast_to(scale_w_quant_orig_t[2], scale_w_v.shape)
])
to_i8 = lambda x: x.round().clip(-127, 127).astype(np.int8)
if is_qkv and multi_query_mode:
scale_w_quant_orig_t_expand = np.ones([weights.shape[-1]])
scale_w_quant_orig_t_expand[:hidden_dim] = scale_w_quant_orig_t[0]
scale_w_quant_orig_t_expand[hidden_dim:hidden_dim +
kv_dim] = scale_w_quant_orig_t[1]
scale_w_quant_orig_t_expand[-kv_dim:] = scale_w_quant_orig_t[2]
weight_int8 = to_i8(weights * scale_w_quant_orig_t_expand)
weight_int8_col = to_i8(weights * scale_w_orig_quant_c)
elif is_qkv and not multi_query_mode:
hidden_dim = weights.shape[0]
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
weight_int8 = weight_int8
weight_int8_col = to_i8(weights * scale_w_orig_quant_c)
else:
weight_int8 = to_i8(weights * scale_w_orig_quant_t)
weight_int8_col = to_i8(weights * scale_w_orig_quant_c)
return {
"weight.int8": weight_int8,
"weight.int8.col": weight_int8_col,
"scale_x_orig_quant": scale_x_orig_quant_t.astype(np.float32),
"scale_w_quant_orig": scale_w_quant_orig_t.astype(np.float32),
"scale_w_quant_orig.col": scale_w_quant_orig_c.astype(np.float32),
"scale_y_accum_quant": scale_y_accum_quant_t.astype(np.float32),
"scale_y_accum_quant.col": scale_y_accum_quant_c.astype(np.float32),
"scale_y_quant_orig": scale_y_quant_orig_t.astype(np.float32),
}
def split(v, tp_size, idx, dim=0):
if tp_size == 1:
return v
if len(v.shape) == 1:
return torch.chunk(v, tp_size)[idx].clone()
else:
return torch.chunk(v, tp_size, dim=dim)[idx].clone()
def reorder_qkv_weight_or_bias(v, n_head, n_hidden, is_bias=False):
""" Reorder the qkv weight.
Note that the shape of the fused QKV weights in HF is different from the
shape that TRT-LLM requires.
HF: (num_heads x 3 x head_dim, hidden_size)
TRT-LLM: (3 x num_heads x head_dim, hidden_size)
This is unlike to the other models in HF e.g. GPT where they have the
same shape with TRT-LLM, i.e., (3 x num_heads x head_dim, hidden_size). Also,
to split across attention heads in tensor parallel, we reshape the qkv
weight: (3, num_heads x head_dim, hidden).
bias : (3, num_heads x head_dim).
"""
head_dim = n_hidden // n_head
# (3 x hidden, ...) view as (num_heads, 3, head_dim, ...)
v = v.reshape(n_head, 3, head_dim, -1)
# permute to (3, num_heads, head_dim, ...)
v = v.transpose(0, 1)
# final shape: weight=(3, hidden, hidden) or bias=(3, hidden)
if is_bias:
return v.reshape(3, n_hidden)
return v.reshape(3, n_hidden, n_hidden)
def split_qkv_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV matrix according to tensor parallelism
"""
v = reorder_qkv_weight_or_bias(v, n_head, n_hidden, is_bias=False)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel), n_hidden)
return split_v.contiguous()
def split_qkv_bias_tp(v, n_head, n_hidden, tensor_parallel, rank):
"""
Splits the QKV bias according to tensor parallelism
"""
v = reorder_qkv_weight_or_bias(v, n_head, n_hidden, is_bias=True)
split_v = split(v, tensor_parallel, rank, dim=1)
split_v = split_v.reshape(3 * (n_hidden // tensor_parallel))
return split_v.contiguous()
def split_matrix_tp(v, tensor_parallel, rank, dim):
return split(v, tensor_parallel, rank, dim=dim)
def get_weight(config, prefix, dtype):
return config[prefix + '.weight'].to(dtype).detach()
def get_bias(config, prefix, dtype):
return config[prefix + '.bias'].to(dtype).detach()
def get_weight_and_bias(config, prefix, dtype):
return get_weight(config, prefix, dtype), get_bias(config, prefix, dtype)
def get_tllm_linear_weight(weight,
prefix,
bias=None,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8):
results = {}
if use_weight_only:
v = weight.cpu().t().contiguous()
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
v, plugin_weight_only_quant_type)
results[prefix + 'weight'] = processed_torch_weights
results[prefix + 'per_channel_scale'] = torch_weight_scales
else:
results[prefix + 'weight'] = weight.contiguous()
if bias is not None:
results[prefix + 'bias'] = bias
return results
def add_tllm_weight(
weights: Dict[str, torch.Tensor],
name: str,
param: torch.Tensor,
quant_mode: QuantMode = QuantMode(0),
):
assert name not in weights, f'{name} is already added.'
if name.endswith('.weight') and quant_mode.is_weight_only():
if quant_mode.is_int8_weight_only():
quant_dtype = torch.int8
elif quant_mode.is_int4_weight_only():
quant_dtype = torch.quint4x2
else:
raise ValueError(
f'Invalid configuration, got quant_mode={quant_mode}')
processed_torch_weights, torch_weight_scales = \
torch.ops.trtllm.symmetric_quantize_last_axis_of_batched_matrix(
param.t().contiguous(), quant_dtype)
weights[name] = processed_torch_weights
scale_name = name.replace('.weight', '.per_channel_scale')
weights[scale_name] = torch_weight_scales
else:
weights[name] = param.contiguous()
@torch.no_grad()
def smooth_bloom_model(model, scales, alpha, bloom_qkv_param, bloom_smoother):
# Smooth the activation and weights with smoother = $\diag{s}$
for name, module in model.named_modules():
if not isinstance(module, BloomBlock):
continue
# reorder qkv weight/bias and scales
param = module.self_attention.query_key_value.weight
param = reorder_torch_qkv_weight_or_bias(param, model, is_bias=False)
layer_name = name + ".self_attention.query_key_value"
act_range_qkv = scales.get(layer_name)
# (n_head x 3 x head_dim) -> (3 x n_head x head_dim)
act_range_qkv['w'] = reorder_torch_qkv_weight_or_bias(
act_range_qkv['w'], model, is_bias=True)
act_range_qkv['y'] = reorder_torch_qkv_weight_or_bias(
act_range_qkv['y'], model, is_bias=True)
scales[layer_name] = act_range_qkv
# qkv_proj
smoother = smooth_gemm(param, scales[layer_name]["x"],
module.input_layernorm.weight,
module.input_layernorm.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = param.abs().max(dim=1)[0]
bloom_qkv_param[layer_name] = param
# dense
# enabled for better accuracy with perf overhead of quantization
layer_name = name + ".self_attention.dense"
smoother = smooth_gemm(module.self_attention.dense.weight,
scales[layer_name]["x"], None, None, alpha)
bloom_smoother[layer_name] = smoother
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.self_attention.dense.weight.abs().max(
dim=1)[0]
# fc1
layer_name = name + ".mlp.dense_h_to_4h"
smoother = smooth_gemm(module.mlp.dense_h_to_4h.weight,
scales[layer_name]["x"],
module.post_attention_layernorm.weight,
module.post_attention_layernorm.bias, alpha)
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.dense_h_to_4h.weight.abs().max(
dim=1)[0]
# fc2
# enabled for better accuracy with perf overhead of quantization
layer_name = name + ".mlp.dense_4h_to_h"
smoother = smooth_gemm(module.mlp.dense_4h_to_h.weight,
scales[layer_name]["x"], None, None, alpha)
bloom_smoother[layer_name] = smoother
scales[layer_name]["x"] = scales[layer_name]["x"] / smoother
scales[layer_name]["w"] = module.mlp.dense_4h_to_h.weight.abs().max(
dim=1)[0]
def get_tllm_linear_sq_weight(
vals,
prefix,
shape,
tensor_parallel,
is_qkv=False,
per_token=False,
per_channel=False,
last_prefix=None,
bias=None,
smoother_value=None,
smoother_shape=None,
rank=0,
cat_dim=0,
):
results = {}
col_shape = shape if (is_qkv or per_channel) else [1, 1]
if per_token:
original_weights = vals["weight.int8.col"]
cur_weights = np.split(original_weights, tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
if smoother_value is None:
results[last_prefix] = torch.from_numpy(
np.array([1.0], dtype=np.float32))
if smoother_value is None:
cur_per_channel_value = np.split(vals["scale_w_quant_orig.col"],
tensor_parallel,
axis=cat_dim)[rank]
else:
cur_per_channel_value = vals["scale_w_quant_orig.col"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array(cur_per_channel_value,
dtype=np.float32).reshape(col_shape)).contiguous()
else:
original_weights = np.array(vals["weight.int8"])
cur_weights = np.split(original_weights, tensor_parallel,
axis=cat_dim)[rank]
if is_qkv:
hidden_dim = cur_weights.shape[0]
cur_weights = cur_weights.reshape(hidden_dim, -1)
results[prefix +
'weight'] = torch.from_numpy(cur_weights).t().contiguous()
cur_per_channel_value = vals["scale_y_accum_quant"]
results[prefix + 'per_channel_scale'] = torch.from_numpy(
np.array([cur_per_channel_value],
dtype=np.float32).reshape(col_shape)).contiguous()
results[last_prefix] = torch.from_numpy(
np.array([vals['scale_x_orig_quant']],
dtype=np.float32)).contiguous()
results[prefix + 'act_scale'] = torch.from_numpy(
np.array([[vals["scale_y_quant_orig"]]],
dtype=np.float32)).contiguous()
if smoother_value is not None:
cur_smoother_value = np.split(smoother_value,
tensor_parallel,
axis=cat_dim)[rank]
results[prefix + 'smoother'] = cur_smoother_value.reshape(
smoother_shape).contiguous().to(torch.float32)
if bias is not None:
results[prefix + 'bias'] = bias
return results
def convert_hf_bloom(hf_bloom,
rank=0,
tensor_parallel=1,
dtype='float32',
use_parallel_embedding=False,
sharding_dim=0,
share_embedding_table=False,
use_weight_only=False,
plugin_weight_only_quant_type=torch.int8,
use_smooth_quant=False,
bloom_qkv_param={},
act_range=None,
smoother=None,
per_channel=False,
per_token=False,
int8_kv_cache=False):
weights = {}
tik = time.time()
model_params = dict(hf_bloom.named_parameters())
dtype = getattr(torch, dtype)
num_attention_heads = hf_bloom.config.n_head
hidden_size = hf_bloom.config.hidden_size
for l in range(hf_bloom.config.num_hidden_layers):
prefix = f'transformer.h.{l}.'
tllm_prex = f'transformer.layers.{l}.'
qkv_weight, qkv_bias = get_weight_and_bias(
model_params, prefix + 'self_attention.query_key_value', dtype)
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
tensor_parallel, rank)
bias = split_qkv_bias_tp(qkv_bias, num_attention_heads, hidden_size,
tensor_parallel, rank)
if use_smooth_quant:
qkv_weight = bloom_qkv_param[prefix +
'self_attention.query_key_value'].t()
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
int8_weights = generate_int8(
qkv_weight,
act_range.get(
(tllm_prex + 'self_attention.query_key_value').replace(
".layers.", ".h.")),
is_qkv=True)
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'attention.qkv.',
[1, 3 * hidden_size // tensor_parallel],
tensor_parallel,
is_qkv=True,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'input_layernorm.scale_to_int',
bias=bias,
smoother_value=None,
smoother_shape=None,
rank=rank,
cat_dim=-1))
else:
split_v = split_qkv_tp(qkv_weight, num_attention_heads, hidden_size,
tensor_parallel, rank)
bias = split_qkv_bias_tp(qkv_bias, num_attention_heads, hidden_size,
tensor_parallel, rank)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.qkv.',
bias, use_weight_only,
plugin_weight_only_quant_type))
if int8_kv_cache:
qkv_weight = qkv_weight.reshape(hidden_size, 3, hidden_size)
int8_weights = generate_int8(
qkv_weight,
act_range.get(
(tllm_prex + 'self_attention.query_key_value').replace(
".layers.", ".h.")),
is_qkv=True)
kv_cache_weights = {}
kv_cache_weights[
tllm_prex +
'attention.kv_cache_scaling_factor'] = torch.from_numpy(
np.array([int8_weights['scale_y_quant_orig']],
dtype=np.float32)).contiguous()
weights.update(kv_cache_weights)
attn_dense_weight, attn_dense_bias = get_weight_and_bias(
model_params, prefix + 'self_attention.dense', dtype)
if use_smooth_quant:
attn_dense_weight = attn_dense_weight.t()
int8_weights = generate_int8(
attn_dense_weight,
act_range.get((tllm_prex + 'self_attention.dense').replace(
".layers.", ".h.")))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'attention.dense.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex +
'attention.quantization_scaling_factor',
bias=attn_dense_bias,
smoother_value=smoother[(tllm_prex +
'self_attention.dense').replace(
".layers.", ".h.")],
smoother_shape=[1, hidden_size // tensor_parallel],
rank=rank,
cat_dim=0))
else:
split_v = split_matrix_tp(attn_dense_weight,
tensor_parallel,
rank,
dim=1)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'attention.dense.',
attn_dense_bias, use_weight_only,
plugin_weight_only_quant_type))
mlp_fc_weight, mlp_fc_bias = get_weight_and_bias(
model_params, prefix + 'mlp.dense_h_to_4h', dtype)
bias = split_matrix_tp(mlp_fc_bias, tensor_parallel, rank, dim=0)
if use_smooth_quant:
mlp_fc_weight = mlp_fc_weight.t()
int8_weights = generate_int8(
mlp_fc_weight,
act_range.get((tllm_prex + 'mlp.dense_h_to_4h').replace(
".layers.", ".h.")))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.fc.',
[1, 4 * hidden_size // tensor_parallel],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'post_layernorm.scale_to_int',
bias=bias,
smoother_value=None,
smoother_shape=None,
rank=rank,
cat_dim=-1))
else:
split_v = split_matrix_tp(mlp_fc_weight,
tensor_parallel,
rank,
dim=0)
bias = split_matrix_tp(mlp_fc_bias, tensor_parallel, rank, dim=0)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.fc.', bias,
use_weight_only,
plugin_weight_only_quant_type))
mlp_proj_weight, mlp_proj_bias = get_weight_and_bias(
model_params, prefix + 'mlp.dense_4h_to_h', dtype)
if use_smooth_quant:
mlp_proj_weight = mlp_proj_weight.t()
int8_weights = generate_int8(
mlp_proj_weight,
act_range.get((tllm_prex + 'mlp.dense_4h_to_h').replace(
".layers.", ".h.")))
weights.update(
get_tllm_linear_sq_weight(
int8_weights,
tllm_prex + 'mlp.proj.', [1, hidden_size],
tensor_parallel,
is_qkv=False,
per_token=per_token,
per_channel=per_channel,
last_prefix=tllm_prex + 'mlp.quantization_scaling_factor',
bias=mlp_proj_bias,
smoother_value=smoother[(tllm_prex +
'mlp.dense_4h_to_h').replace(
".layers.", ".h.")],
smoother_shape=[1, 4 * hidden_size // tensor_parallel],
rank=rank,
cat_dim=0))
else:
split_v = split_matrix_tp(mlp_proj_weight,
tensor_parallel,
rank,
dim=1)
weights.update(
get_tllm_linear_weight(split_v, tllm_prex + 'mlp.proj.',
mlp_proj_bias, use_weight_only,
plugin_weight_only_quant_type))
# Layer norms do not use tensor parallelism
input_ln_weight, input_ln_bias = get_weight_and_bias(
model_params, prefix + 'input_layernorm', dtype)
weights[tllm_prex + 'input_layernorm.weight'] = input_ln_weight
weights[tllm_prex + 'input_layernorm.bias'] = input_ln_bias
post_ln_weight, post_ln_bias = get_weight_and_bias(
model_params, prefix + 'post_attention_layernorm', dtype)
weights[tllm_prex + 'post_layernorm.weight'] = post_ln_weight
weights[tllm_prex + 'post_layernorm.bias'] = post_ln_bias
embed_w = get_weight(model_params, 'transformer.word_embeddings', dtype)
if not share_embedding_table:
weights['lm_head.weight'] = split_matrix_tp(embed_w.clone(),
tensor_parallel,
rank,
dim=0)
if not use_parallel_embedding:
weights['transformer.vocab_embedding.weight'] = embed_w
else:
assert hf_bloom.config.vocab_size % tensor_parallel == 0
weights['transformer.vocab_embedding.weight'] = split_matrix_tp(
embed_w, tensor_parallel, rank, dim=sharding_dim)
embed_f_w, embed_f_b = get_weight_and_bias(
model_params, 'transformer.word_embeddings_layernorm', dtype)
weights['transformer.ln_embed.weight'] = embed_f_w
weights['transformer.ln_embed.bias'] = embed_f_b
ln_f_w, ln_f_b = get_weight_and_bias(model_params, 'transformer.ln_f',
dtype)
weights['transformer.ln_f.weight'] = ln_f_w
weights['transformer.ln_f.bias'] = ln_f_b
tok = time.time()
t = time.strftime('%H:%M:%S', time.gmtime(tok - tik))
print(f'Weights loaded. Total time: {t}')
return weights
def rename_hf_to_tllm(name: str):
""" Rename a HF parameter name by the corresponding TRT-LLM style name. """
if 'word_embeddings_layernorm.' in name:
name = name.replace('word_embeddings_layernorm', 'ln_embed')
if not name.startswith('transformer.'):
name = f'transformer.{name}'
elif 'word_embeddings.' in name:
name = name.replace('word_embeddings', 'vocab_embedding')
if name.startswith(('ln_embed.', 'vocab_embedding.', 'ln_f.')):
name = f'transformer.{name}'
# Parameter names in layers
if name.startswith(('transformer.h.', 'h.')):
import re
name = re.sub(r'^(transformer.h.|h.)', 'transformer.layers.', name, 1)
if 'post_attention_layernorm' in name:
name = name.replace('post_attention_layernorm', 'post_layernorm')
elif 'self_attention.query_key_value' in name:
name = name.replace('self_attention.query_key_value', 'attention.qkv')
elif 'self_attention.dense' in name:
name = name.replace('self_attention.dense', 'attention.dense')
elif 'mlp.dense_h_to_4h' in name:
name = name.replace('mlp.dense_h_to_4h', 'mlp.fc')
elif 'mlp.dense_4h_to_h' in name:
name = name.replace('mlp.dense_4h_to_h', 'mlp.proj')
return name
def contain_any(name: str, words: Iterable[str]):
for word in words:
if word in name:
return True
return False
def convert_from_hf_checkpoint(
model_dir: Union[str, Path],
rank=0,
tensor_parallel=1,
dtype: Union[str, torch.dtype] = torch.float32,
use_parallel_embedding: bool = False,
sharding_dim: int = 0,
share_embedding_table: bool = False,
use_weight_only: bool = False,
plugin_weight_only_quant_type: torch.dtype = torch.int8,
use_smooth_quant: bool = False,
bloom_qkv_param: Optional[Dict] = None,
act_range: Optional[Any] = None,
smoother: Optional[Any] = None,
per_channel: bool = False,
per_token: bool = False,
int8_kv_cache: bool = False,
):
logger.info('Loading weights from HF BLOOM...')
tik = time.time()
weights = {}
hf_config = BloomConfig.from_pretrained(model_dir)
num_heads = hf_config.n_head
hidden_size = hf_config.hidden_size
if isinstance(dtype, str):
dtype = tensorrt_llm.str_dtype_to_torch(dtype)
tp_rank = rank
tp_size = tensor_parallel
if use_smooth_quant:
quant_mode = QuantMode.use_smooth_quant(per_token, per_channel)
elif use_weight_only:
quant_mode = QuantMode.from_description(
quantize_weights=True,
quantize_activations=False,
per_token=False,
per_channel=False,
use_int8_kv_cache=int8_kv_cache,
use_int4_weights=plugin_weight_only_quant_type == torch.quint4x2)
else:
quant_mode = QuantMode(0)
def is_bias(_name):
return 'bias' in _name
for model_file in iterate_shard_files(model_dir, tp_rank):
logger.debug(f'Loading file {str(model_file)}...')
model_params = load_state_dict(model_file, dtype=dtype)
for name, param in model_params.items():
logger.debug(f'Converting weight {name}...')
tllm_name = rename_hf_to_tllm(name)
param = param.detach().cpu()
# TODO: Support SmmothQuant.
if 'self_attention.query_key_value' in name:
if not is_bias(name):
param = split_qkv_tp(param, num_heads, hidden_size, tp_size,
tp_rank)
# TODO: Add KV scalers when quantizing KV cache.
else:
param = split_qkv_bias_tp(param, num_heads, hidden_size,
tp_size, tp_rank)
add_tllm_weight(weights, tllm_name, param, quant_mode)
elif 'self_attention.dense' in name:
if not is_bias(name):
param = split_matrix_tp(param, tp_size, tp_rank, dim=1)
add_tllm_weight(weights, tllm_name, param, quant_mode)
elif 'mlp.dense_h_to_4h' in name:
if not is_bias(name):
param = split_matrix_tp(param, tp_size, tp_rank, dim=0)
else:
param = split_matrix_tp(param, tp_size, tp_rank, dim=0)
add_tllm_weight(weights, tllm_name, param, quant_mode)
elif 'mlp.dense_4h_to_h' in name:
if not is_bias(name):
param = split_matrix_tp(param, tp_size, tp_rank, dim=1)
add_tllm_weight(weights, tllm_name, param, quant_mode)
elif 'word_embeddings.' in name:
if not share_embedding_table:
# TODO: safetensor doesn't allow to save a shared tensor.
# Currently, we clone the weight but to save the disk, it
# would be better to skip saving lm_head weights and
# handle it at the loading phase.
lm_head = split_matrix_tp(param, tp_size, tp_rank, dim=0)
weights['lm_head.weight'] = lm_head.clone()
if not use_parallel_embedding:
weights[tllm_name] = param
else:
assert hf_config.vocab_size % tp_size == 0
weights[tllm_name] = split_matrix_tp(param,
tp_size,
tp_rank,
dim=sharding_dim)
elif contain_any(name,