diff --git a/lean4/src/putnam_1962_a2.lean b/lean4/src/putnam_1962_a2.lean index 057467c3..1340c6b4 100644 --- a/lean4/src/putnam_1962_a2.lean +++ b/lean4/src/putnam_1962_a2.lean @@ -1,16 +1,15 @@ import Mathlib open BigOperators -open MeasureTheory +open MeasureTheory Set abbrev putnam_1962_a2_solution : Set (ℝ → ℝ) := sorry --- {f : ℝ → ℝ | ∃ a c : ℝ, a > 0 ∧ f = fun x => a / (1 - c * x)^2} +-- {f : ℝ → ℝ | ∃ a c : ℝ, a ≥ 0 ∧ f = fun x ↦ a / (1 - c * x) ^ 2} theorem putnam_1962_a2 -(hf : ℝ → (ℝ → ℝ) → Prop) -(hf_def : hf = fun (e : ℝ) (f : ℝ → ℝ) => ∀ x ∈ Set.Ioo 0 e, (⨍ v in Set.Icc 0 x, f v) = Real.sqrt ((f 0) * (f x))) -(hfinf : (ℝ → ℝ) → Prop) -(hfinf_def : hfinf = fun (f : ℝ → ℝ) => ∀ x > 0, (⨍ v in Set.Icc 0 x, f v) = Real.sqrt ((f 0) * (f x))) -: (∀ f : ℝ → ℝ, (hfinf f → ∃ g ∈ putnam_1962_a2_solution, ∀ x ≥ 0, g x = f x) ∧ -∀ e > 0, hf e f → ∃ g ∈ putnam_1962_a2_solution, ∀ x ∈ Set.Ico 0 e, g x = f x) ∧ -∀ f ∈ putnam_1962_a2_solution, hfinf f ∨ (∃ e > 0, hf e f) := -sorry + (P : Set ℝ → (ℝ → ℝ) → Prop) + (P_def : ∀ s f, P s f ↔ ∀ x ∈ s, ⨍ t in Ico 0 x, f t = √(f 0 * f x)) : + (∀ f, + (P (Ioi 0) f → ∃ g ∈ putnam_1962_a2_solution, EqOn f g (Ici 0)) ∧ + (∀ e > 0, P (Ioo 0 e) f → ∃ g ∈ putnam_1962_a2_solution, EqOn f g (Ico 0 e))) ∧ + ∀ f ∈ putnam_1962_a2_solution, P (Ioi 0) f ∨ (∃ e > 0, P (Ioo 0 e) f) := + sorry