-
Notifications
You must be signed in to change notification settings - Fork 233
/
grpc_explicit_byte_content_client.py
executable file
·128 lines (111 loc) · 4.69 KB
/
grpc_explicit_byte_content_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/env python
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import sys
import grpc
import numpy as np
from tritonclient import utils
from tritonclient.grpc import service_pb2, service_pb2_grpc
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8001",
help="Inference server URL. Default is localhost:8001.",
)
FLAGS = parser.parse_args()
# We use a simple model that takes 2 input tensors of 16 integers
# each and returns 2 output tensors of 16 integers each. One
# output tensor is the element-wise sum of the inputs and one
# output is the element-wise difference.
model_name = "simple_string"
model_version = ""
batch_size = 1
# Create gRPC stub for communicating with the server
channel = grpc.insecure_channel(FLAGS.url)
grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel)
# Generate the request
request = service_pb2.ModelInferRequest()
request.model_name = model_name
request.model_version = model_version
# Populate the inputs in inference request
input0 = service_pb2.ModelInferRequest().InferInputTensor()
input0.name = "INPUT0"
input0.datatype = "BYTES"
input0.shape.extend([1, 16])
for i in range(16):
input0.contents.bytes_contents.append(("{}".format(i)).encode("utf-8"))
input1 = service_pb2.ModelInferRequest().InferInputTensor()
input1.name = "INPUT1"
input1.datatype = "BYTES"
input1.shape.extend([1, 16])
for i in range(16):
input1.contents.bytes_contents.append("1".encode("utf-8"))
request.inputs.extend([input0, input1])
# Populate the outputs in the inference request
output0 = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output0.name = "OUTPUT0"
output1 = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
output1.name = "OUTPUT1"
request.outputs.extend([output0, output1])
response = grpc_stub.ModelInfer(request)
# Deserialize the output raw tensor to numpy array for proper comparison
output_results = []
index = 0
for output in response.outputs:
shape = []
for value in output.shape:
shape.append(value)
output_results.append(
utils.deserialize_bytes_tensor(response.raw_output_contents[index])
)
output_results[-1] = np.resize(output_results[-1], shape)
index += 1
if len(output_results) != 2:
print("expected two output results")
sys.exit(1)
for i in range(16):
print("{} + 1 = {}".format(i, output_results[0][0][i]))
print("{} - 1 = {}".format(i, output_results[1][0][i]))
if (i + 1) != int(output_results[0][0][i]):
print("explicit string infer error: incorrect sum")
sys.exit(1)
if (i - 1) != int(output_results[1][0][i]):
print("explicit string infer error: incorrect difference")
sys.exit(1)
print("PASS: explicit string")