-
Notifications
You must be signed in to change notification settings - Fork 233
/
simple_http_infer_client.py
executable file
·309 lines (285 loc) · 10.1 KB
/
simple_http_infer_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python
# Copyright 2020-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import sys
import gevent.ssl
import numpy as np
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
def test_infer(
model_name,
input0_data,
input1_data,
headers=None,
request_compression_algorithm=None,
response_compression_algorithm=None,
):
inputs = []
outputs = []
inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32"))
# Initialize the data
inputs[0].set_data_from_numpy(input0_data, binary_data=False)
inputs[1].set_data_from_numpy(input1_data, binary_data=True)
outputs.append(httpclient.InferRequestedOutput("OUTPUT0", binary_data=True))
outputs.append(httpclient.InferRequestedOutput("OUTPUT1", binary_data=False))
query_params = {"test_1": 1, "test_2": 2}
results = triton_client.infer(
model_name,
inputs,
outputs=outputs,
query_params=query_params,
headers=headers,
request_compression_algorithm=request_compression_algorithm,
response_compression_algorithm=response_compression_algorithm,
)
return results
def test_infer_no_outputs(
model_name,
input0_data,
input1_data,
headers=None,
request_compression_algorithm=None,
response_compression_algorithm=None,
):
inputs = []
inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32"))
inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32"))
# Initialize the data
inputs[0].set_data_from_numpy(input0_data, binary_data=False)
inputs[1].set_data_from_numpy(input1_data, binary_data=True)
query_params = {"test_1": 1, "test_2": 2}
results = triton_client.infer(
model_name,
inputs,
outputs=None,
query_params=query_params,
headers=headers,
request_compression_algorithm=request_compression_algorithm,
response_compression_algorithm=response_compression_algorithm,
)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8000",
help="Inference server URL. Default is localhost:8000.",
)
parser.add_argument(
"-s",
"--ssl",
action="store_true",
required=False,
default=False,
help="Enable encrypted link to the server using HTTPS",
)
parser.add_argument(
"--key-file",
type=str,
required=False,
default=None,
help="File holding client private key. Default is None.",
)
parser.add_argument(
"--cert-file",
type=str,
required=False,
default=None,
help="File holding client certificate. Default is None.",
)
parser.add_argument(
"--ca-certs",
type=str,
required=False,
default=None,
help="File holding ca certificate. Default is None.",
)
parser.add_argument(
"--insecure",
action="store_true",
required=False,
default=False,
help="Use no peer verification in SSL communications. Use with caution. Default is False.",
)
parser.add_argument(
"-H",
dest="http_headers",
metavar="HTTP_HEADER",
required=False,
action="append",
help="HTTP headers to add to inference server requests. "
+ 'Format is -H"Header:Value".',
)
parser.add_argument(
"--request-compression-algorithm",
type=str,
required=False,
default=None,
help="The compression algorithm to be used when sending request body to server. Default is None.",
)
parser.add_argument(
"--response-compression-algorithm",
type=str,
required=False,
default=None,
help="The compression algorithm to be used when receiving response body from server. Default is None.",
)
FLAGS = parser.parse_args()
try:
if FLAGS.ssl:
ssl_options = {}
if FLAGS.key_file is not None:
ssl_options["keyfile"] = FLAGS.key_file
if FLAGS.cert_file is not None:
ssl_options["certfile"] = FLAGS.cert_file
if FLAGS.ca_certs is not None:
ssl_options["ca_certs"] = FLAGS.ca_certs
ssl_context_factory = None
if FLAGS.insecure:
ssl_context_factory = gevent.ssl._create_unverified_context
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url,
verbose=FLAGS.verbose,
ssl=True,
ssl_options=ssl_options,
insecure=FLAGS.insecure,
ssl_context_factory=ssl_context_factory,
)
else:
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
)
except Exception as e:
print("channel creation failed: " + str(e))
sys.exit(1)
model_name = "simple"
# Create the data for the two input tensors. Initialize the first
# to unique integers and the second to all ones.
input0_data = np.arange(start=0, stop=16, dtype=np.int32)
input0_data = np.expand_dims(input0_data, axis=0)
input1_data = np.full(shape=(1, 16), fill_value=-1, dtype=np.int32)
if FLAGS.http_headers is not None:
headers_dict = {l.split(":")[0]: l.split(":")[1] for l in FLAGS.http_headers}
else:
headers_dict = None
# Infer with requested Outputs
results = test_infer(
model_name,
input0_data,
input1_data,
headers_dict,
FLAGS.request_compression_algorithm,
FLAGS.response_compression_algorithm,
)
print(results.get_response())
statistics = triton_client.get_inference_statistics(
model_name=model_name, headers=headers_dict
)
print(statistics)
if len(statistics["model_stats"]) != 1:
print("FAILED: Inference Statistics")
sys.exit(1)
# Validate the results by comparing with precomputed values.
output0_data = results.as_numpy("OUTPUT0")
output1_data = results.as_numpy("OUTPUT1")
for i in range(16):
print(
str(input0_data[0][i])
+ " + "
+ str(input1_data[0][i])
+ " = "
+ str(output0_data[0][i])
)
print(
str(input0_data[0][i])
+ " - "
+ str(input1_data[0][i])
+ " = "
+ str(output1_data[0][i])
)
if (input0_data[0][i] + input1_data[0][i]) != output0_data[0][i]:
print("sync infer error: incorrect sum")
sys.exit(1)
if (input0_data[0][i] - input1_data[0][i]) != output1_data[0][i]:
print("sync infer error: incorrect difference")
sys.exit(1)
# Infer without requested Outputs
results = test_infer_no_outputs(
model_name,
input0_data,
input1_data,
headers_dict,
FLAGS.request_compression_algorithm,
FLAGS.response_compression_algorithm,
)
print(results.get_response())
# Validate the results by comparing with precomputed values.
output0_data = results.as_numpy("OUTPUT0")
output1_data = results.as_numpy("OUTPUT1")
for i in range(16):
print(
str(input0_data[0][i])
+ " + "
+ str(input1_data[0][i])
+ " = "
+ str(output0_data[0][i])
)
print(
str(input0_data[0][i])
+ " - "
+ str(input1_data[0][i])
+ " = "
+ str(output1_data[0][i])
)
if (input0_data[0][i] + input1_data[0][i]) != output0_data[0][i]:
print("sync infer error: incorrect sum")
sys.exit(1)
if (input0_data[0][i] - input1_data[0][i]) != output1_data[0][i]:
print("sync infer error: incorrect difference")
sys.exit(1)
# Infer with incorrect model name
try:
_ = test_infer("wrong_model_name", input0_data, input1_data).get_response()
print("expected error message for wrong model name")
sys.exit(1)
except InferenceServerException as ex:
print(ex)
if not (ex.message().startswith("Request for unknown model")):
print("improper error message for wrong model name")
sys.exit(1)