Skip to content

Latest commit

 

History

History
51 lines (31 loc) · 2.1 KB

File metadata and controls

51 lines (31 loc) · 2.1 KB

English | 简体中文

特色垂类检测模型

我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。

任务 算法 精度(Box AP) 下载 配置文件
行人检测 YOLOv3 51.8 下载链接 配置文件

行人检测(Pedestrian Detection)

行人检测的主要应用有智能监控。在监控场景中,大多是从公共区域的监控摄像头视角拍摄行人,获取图像后再进行行人检测。

1. 模型结构

Backbone为Dacknet53的YOLOv3。

2. 训练参数配置

PaddleDetection提供了使用COCO数据集对YOLOv3进行训练的参数配置文件yolov3_darknet53_270e_coco.yml,与之相比,在进行行人检测的模型训练时,我们对以下参数进行了修改:

  • num_classes: 1
  • dataset_dir: dataset/pedestrian

2. 精度指标

模型在我们针对监控场景的内部数据上精度指标为:

IOU=.5时的AP为 0.792。

IOU=.5-.95时的AP为 0.518。

3. 预测

用户可以使用我们训练好的模型进行行人检测:

export CUDA_VISIBLE_DEVICES=0
python -u tools/infer.py -c configs/pphuman/pedestrian_yolov3/pedestrian_yolov3_darknet.yml \
                         -o weights=https://paddledet.bj.bcebos.com/models/pedestrian_yolov3_darknet.pdparams \
                         --infer_dir configs/pphuman/pedestrian_yolov3/demo \
                         --draw_threshold 0.3 \
                         --output_dir configs/pphuman/pedestrian_yolov3/demo/output

预测结果示例: