forked from PaddlePaddle/PaddleDetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mot_jde_infer.py
381 lines (337 loc) · 14.5 KB
/
mot_jde_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import yaml
import cv2
import numpy as np
from collections import defaultdict
import paddle
from benchmark_utils import PaddleInferBenchmark
from preprocess import decode_image
from utils import argsparser, Timer, get_current_memory_mb
from infer import Detector, get_test_images, print_arguments, bench_log, PredictConfig
# add python path
import sys
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)
from pptracking.python.mot import JDETracker
from pptracking.python.mot.utils import MOTTimer, write_mot_results
from pptracking.python.mot.visualize import plot_tracking_dict
# Global dictionary
MOT_JDE_SUPPORT_MODELS = {
'JDE',
'FairMOT',
}
class JDE_Detector(Detector):
"""
Args:
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
batch_size (int): size of pre batch in inference
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
trt_opt_shape (int): opt shape for dynamic shape in trt
trt_calib_mode (bool): If the model is produced by TRT offline quantitative
calibration, trt_calib_mode need to set True
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
output_dir (string): The path of output, default as 'output'
threshold (float): Score threshold of the detected bbox, default as 0.5
save_images (bool): Whether to save visualization image results, default as False
save_mot_txts (bool): Whether to save tracking results (txt), default as False
"""
def __init__(
self,
model_dir,
tracker_config=None,
device='CPU',
run_mode='paddle',
batch_size=1,
trt_min_shape=1,
trt_max_shape=1088,
trt_opt_shape=608,
trt_calib_mode=False,
cpu_threads=1,
enable_mkldnn=False,
output_dir='output',
threshold=0.5,
save_images=False,
save_mot_txts=False, ):
super(JDE_Detector, self).__init__(
model_dir=model_dir,
device=device,
run_mode=run_mode,
batch_size=batch_size,
trt_min_shape=trt_min_shape,
trt_max_shape=trt_max_shape,
trt_opt_shape=trt_opt_shape,
trt_calib_mode=trt_calib_mode,
cpu_threads=cpu_threads,
enable_mkldnn=enable_mkldnn,
output_dir=output_dir,
threshold=threshold, )
self.save_images = save_images
self.save_mot_txts = save_mot_txts
assert batch_size == 1, "MOT model only supports batch_size=1."
self.det_times = Timer(with_tracker=True)
self.num_classes = len(self.pred_config.labels)
# tracker config
assert self.pred_config.tracker, "The exported JDE Detector model should have tracker."
cfg = self.pred_config.tracker
min_box_area = cfg.get('min_box_area', 0.0)
vertical_ratio = cfg.get('vertical_ratio', 0.0)
conf_thres = cfg.get('conf_thres', 0.0)
tracked_thresh = cfg.get('tracked_thresh', 0.7)
metric_type = cfg.get('metric_type', 'euclidean')
self.tracker = JDETracker(
num_classes=self.num_classes,
min_box_area=min_box_area,
vertical_ratio=vertical_ratio,
conf_thres=conf_thres,
tracked_thresh=tracked_thresh,
metric_type=metric_type)
def postprocess(self, inputs, result):
# postprocess output of predictor
np_boxes = result['pred_dets']
if np_boxes.shape[0] <= 0:
print('[WARNNING] No object detected.')
result = {'pred_dets': np.zeros([0, 6]), 'pred_embs': None}
result = {k: v for k, v in result.items() if v is not None}
return result
def tracking(self, det_results):
pred_dets = det_results['pred_dets'] # cls_id, score, x0, y0, x1, y1
pred_embs = det_results['pred_embs']
online_targets_dict = self.tracker.update(pred_dets, pred_embs)
online_tlwhs = defaultdict(list)
online_scores = defaultdict(list)
online_ids = defaultdict(list)
for cls_id in range(self.num_classes):
online_targets = online_targets_dict[cls_id]
for t in online_targets:
tlwh = t.tlwh
tid = t.track_id
tscore = t.score
if tlwh[2] * tlwh[3] <= self.tracker.min_box_area: continue
if self.tracker.vertical_ratio > 0 and tlwh[2] / tlwh[
3] > self.tracker.vertical_ratio:
continue
online_tlwhs[cls_id].append(tlwh)
online_ids[cls_id].append(tid)
online_scores[cls_id].append(tscore)
return online_tlwhs, online_scores, online_ids
def predict(self, repeats=1):
'''
Args:
repeats (int): repeats number for prediction
Returns:
result (dict): include 'pred_dets': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
FairMOT(JDE)'s result include 'pred_embs': np.ndarray:
shape: [N, 128]
'''
# model prediction
np_pred_dets, np_pred_embs = None, None
for i in range(repeats):
self.predictor.run()
output_names = self.predictor.get_output_names()
boxes_tensor = self.predictor.get_output_handle(output_names[0])
np_pred_dets = boxes_tensor.copy_to_cpu()
embs_tensor = self.predictor.get_output_handle(output_names[1])
np_pred_embs = embs_tensor.copy_to_cpu()
result = dict(pred_dets=np_pred_dets, pred_embs=np_pred_embs)
return result
def predict_image(self,
image_list,
run_benchmark=False,
repeats=1,
visual=True,
seq_name=None):
mot_results = []
num_classes = self.num_classes
image_list.sort()
ids2names = self.pred_config.labels
data_type = 'mcmot' if num_classes > 1 else 'mot'
for frame_id, img_file in enumerate(image_list):
batch_image_list = [img_file] # bs=1 in MOT model
if run_benchmark:
# preprocess
inputs = self.preprocess(batch_image_list) # warmup
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
# model prediction
result_warmup = self.predict(repeats=repeats) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
# postprocess
result_warmup = self.postprocess(inputs, result) # warmup
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking
result_warmup = self.tracking(det_result)
self.det_times.tracking_time_s.start()
online_tlwhs, online_scores, online_ids = self.tracking(
det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
cm, gm, gu = get_current_memory_mb()
self.cpu_mem += cm
self.gpu_mem += gm
self.gpu_util += gu
else:
self.det_times.preprocess_time_s.start()
inputs = self.preprocess(batch_image_list)
self.det_times.preprocess_time_s.end()
self.det_times.inference_time_s.start()
result = self.predict()
self.det_times.inference_time_s.end()
self.det_times.postprocess_time_s.start()
det_result = self.postprocess(inputs, result)
self.det_times.postprocess_time_s.end()
# tracking process
self.det_times.tracking_time_s.start()
online_tlwhs, online_scores, online_ids = self.tracking(
det_result)
self.det_times.tracking_time_s.end()
self.det_times.img_num += 1
if visual:
if len(image_list) > 1 and frame_id % 10 == 0:
print('Tracking frame {}'.format(frame_id))
frame, _ = decode_image(img_file, {})
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
ids2names=ids2names)
if seq_name is None:
seq_name = image_list[0].split('/')[-2]
save_dir = os.path.join(self.output_dir, seq_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
cv2.imwrite(
os.path.join(save_dir, '{:05d}.jpg'.format(frame_id)), im)
mot_results.append([online_tlwhs, online_scores, online_ids])
return mot_results
def predict_video(self, video_file, camera_id):
video_out_name = 'mot_output.mp4'
if camera_id != -1:
capture = cv2.VideoCapture(camera_id)
else:
capture = cv2.VideoCapture(video_file)
video_out_name = os.path.split(video_file)[-1]
# Get Video info : resolution, fps, frame count
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(capture.get(cv2.CAP_PROP_FPS))
frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
print("fps: %d, frame_count: %d" % (fps, frame_count))
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
video_format = 'mp4v'
fourcc = cv2.VideoWriter_fourcc(*video_format)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
frame_id = 1
timer = MOTTimer()
results = defaultdict(list) # support single class and multi classes
num_classes = self.num_classes
data_type = 'mcmot' if num_classes > 1 else 'mot'
ids2names = self.pred_config.labels
while (1):
ret, frame = capture.read()
if not ret:
break
if frame_id % 10 == 0:
print('Tracking frame: %d' % (frame_id))
frame_id += 1
timer.tic()
seq_name = video_out_name.split('.')[0]
mot_results = self.predict_image(
[frame[:, :, ::-1]], visual=False, seq_name=seq_name)
timer.toc()
online_tlwhs, online_scores, online_ids = mot_results[0]
for cls_id in range(num_classes):
results[cls_id].append(
(frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id],
online_ids[cls_id]))
fps = 1. / timer.duration
im = plot_tracking_dict(
frame,
num_classes,
online_tlwhs,
online_ids,
online_scores,
frame_id=frame_id,
fps=fps,
ids2names=ids2names)
writer.write(im)
if camera_id != -1:
cv2.imshow('Mask Detection', im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
if self.save_mot_txts:
result_filename = os.path.join(
self.output_dir, video_out_name.split('.')[-2] + '.txt')
write_mot_results(result_filename, results, data_type, num_classes)
writer.release()
def main():
detector = JDE_Detector(
FLAGS.model_dir,
tracker_config=None,
device=FLAGS.device,
run_mode=FLAGS.run_mode,
batch_size=1,
trt_min_shape=FLAGS.trt_min_shape,
trt_max_shape=FLAGS.trt_max_shape,
trt_opt_shape=FLAGS.trt_opt_shape,
trt_calib_mode=FLAGS.trt_calib_mode,
cpu_threads=FLAGS.cpu_threads,
enable_mkldnn=FLAGS.enable_mkldnn,
output_dir=FLAGS.output_dir,
threshold=FLAGS.threshold,
save_images=FLAGS.save_images,
save_mot_txts=FLAGS.save_mot_txts)
# predict from video file or camera video stream
if FLAGS.video_file is not None or FLAGS.camera_id != -1:
detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
else:
# predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
mode = FLAGS.run_mode
model_dir = FLAGS.model_dir
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
bench_log(detector, img_list, model_info, name='MOT')
if __name__ == '__main__':
paddle.enable_static()
parser = argsparser()
FLAGS = parser.parse_args()
print_arguments(FLAGS)
FLAGS.device = FLAGS.device.upper()
assert FLAGS.device in ['CPU', 'GPU', 'XPU'
], "device should be CPU, GPU or XPU"
main()