This repository implements Knowledge Distillation in the SimpleDet framework.
python3 detection_train.py --config config/kd/retina_r50v1b_fpn_1x_fitnet_g10.py
python3 detection_test.py --config config/kd/retina_r50v1b_fpn_1x_fitnet_g10.py
All AP results are reported on the minival2014 split of the COCO dataset.
Model | Backbone | Head | Train Schedule | AP | AP50 | AP75 | APs | APm | APl |
---|---|---|---|---|---|---|---|---|---|
Retina | R50v1b-FPN | 4Conv | 1X | 36.6 | 56.9 | 39.0 | 20.3 | 40.7 | 47.2 |
Retina | R50v1b-FPN-TR152v1b1X | 4Conv | 1X | 38.9 | 59.0 | 41.6 | 21.4 | 43.3 | 52.1 |
Retina | R50v1b-FPN-TR152v1b1X | 4Conv | 2X | 40.1 | 60.6 | 43.1 | 21.8 | 44.5 | 54.3 |
Faster | R50v1b-FPN | 2MLP | 1X | 37.2 | 59.4 | 40.4 | 22.3 | 41.3 | 47.6 |
Faster | R50v1b-FPN | 2MLP | 2X | 38.0 | 59.7 | 41.5 | 22.2 | 41.6 | 48.8 |
Faster | R50v1b-FPN-TR152v1b2X | 2MLP | 1X | 39.9 | 61.3 | 43.6 | 22.7 | 44.2 | 52.7 |
Faster | R50v1b-FPN-TR152v1b2X | 2MLP | 2X | 40.5 | 62.2 | 43.9 | 23.1 | 44.7 | 53.9 |