-
Notifications
You must be signed in to change notification settings - Fork 20
/
run_open_LLM.py
136 lines (117 loc) · 5.17 KB
/
run_open_LLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import time
import argparse
from utils import error
from utils.llm_aft_trainer import LLM_Inference
from utils.config import *
from utils.utils import merge
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--memo", type=str, default='LLMTLCSRun')
parser.add_argument("--llm_model", type=str, default="llama_cgpr_13b_jinan_1")
parser.add_argument("--llm_path", type=str, default="./ft_models/merged/llama_cgpr_13b_jinan_1")
parser.add_argument("--num_rounds", type=int, default=1)
parser.add_argument("--new_max_tokens", type=int, default=1024)
parser.add_argument("--proj_name", type=str, default="LLM-TSCS-extreme")
parser.add_argument("--eightphase", action="store_true", default=False)
parser.add_argument("--multi_process", action="store_true", default=True)
parser.add_argument("--workers", type=int, default=1)
parser.add_argument("--dataset", type=str, default="template")
parser.add_argument("--traffic_file", type=str, default="flow_main_stream.json")
return parser.parse_args()
def main(in_args):
traffic_file_list = []
if in_args.dataset == 'jinan':
count = 3600
road_net = "3_4"
traffic_file_list = ["anon_3_4_jinan_real.json", "anon_3_4_jinan_real_2000.json",
"anon_3_4_jinan_real_2500.json", "anon_3_4_jinan_synthetic_24000_60min.json",
"anon_3_4_jinan_synthetic_24h_6000.json"]
template = "Jinan"
elif in_args.dataset == 'hangzhou':
count = 3600
road_net = "4_4"
traffic_file_list = ["anon_4_4_hangzhou_real.json", "anon_4_4_hangzhou_real_5816.json", "anon_4_4_hangzhou_synthetic_24000_60min.json"]
template = "Hangzhou"
elif in_args.dataset == 'newyork_16x3':
count = 3600
road_net = "16_3"
traffic_file_list = ["anon_16_3_newyork_real.json"]
template = "NewYork"
elif in_args.dataset == 'newyork_28x7':
count = 3600
road_net = "28_7"
traffic_file_list = ["anon_28_7_newyork_real_double.json", "anon_28_7_newyork_real_triple.json"]
template = "NewYork"
in_args.model = in_args.memo
if "24h" in in_args.traffic_file:
count = 86400
# flow_file error
try:
if in_args.traffic_file not in traffic_file_list:
raise error.flowFileException('Flow file does not exist.')
except error.flowFileException as e:
print(e)
return
NUM_ROW = int(road_net.split('_')[0])
NUM_COL = int(road_net.split('_')[1])
num_intersections = NUM_ROW * NUM_COL
print('num_intersections:', num_intersections)
print(in_args.traffic_file)
dic_agent_conf_extra = {
"LLM_PATH": in_args.llm_path,
"LLM_MODEL": in_args.llm_model,
"LOG_DIR": f"./{in_args.llm_model}_logs",
"NEW_MAX_TOKENS": in_args.new_max_tokens
}
dic_traffic_env_conf_extra = {
"NUM_AGENTS": num_intersections,
"NUM_INTERSECTIONS": num_intersections,
"MODEL_NAME": f"{in_args.model}-{dic_agent_conf_extra['LLM_MODEL']}",
"PROJECT_NAME": in_args.proj_name,
"RUN_COUNTS": count,
"NUM_ROUNDS": in_args.num_rounds,
"NUM_ROW": NUM_ROW,
"NUM_COL": NUM_COL,
"TRAFFIC_FILE": in_args.traffic_file,
"ROADNET_FILE": "roadnet_{0}.json".format(road_net),
"LIST_STATE_FEATURE": [
"cur_phase",
"traffic_movement_pressure_queue",
],
"DIC_REWARD_INFO": {
'queue_length': -0.25
}
}
if in_args.eightphase:
dic_traffic_env_conf_extra["PHASE"] = {
1: [0, 1, 0, 1, 0, 0, 0, 0],
2: [0, 0, 0, 0, 0, 1, 0, 1],
3: [1, 0, 1, 0, 0, 0, 0, 0],
4: [0, 0, 0, 0, 1, 0, 1, 0],
5: [1, 1, 0, 0, 0, 0, 0, 0],
6: [0, 0, 1, 1, 0, 0, 0, 0],
7: [0, 0, 0, 0, 0, 0, 1, 1],
8: [0, 0, 0, 0, 1, 1, 0, 0]
}
dic_traffic_env_conf_extra["PHASE_LIST"] = ['WT_ET', 'NT_ST', 'WL_EL', 'NL_SL',
'WL_WT', 'EL_ET', 'SL_ST', 'NL_NT']
dic_agent_conf_extra["FIXED_TIME"] = [30, 30, 30, 30, 30, 30, 30, 30]
else:
dic_agent_conf_extra["FIXED_TIME"] = [30, 30, 30, 30]
dic_traffic_env_conf_extra["NUM_AGENTS"] = dic_traffic_env_conf_extra["NUM_INTERSECTIONS"]
dic_path_extra = {
"PATH_TO_MODEL": os.path.join("model", in_args.memo, in_args.traffic_file + "_" +
time.strftime('%m_%d_%H_%M_%S', time.localtime(time.time()))),
"PATH_TO_WORK_DIRECTORY": os.path.join("records", in_args.memo, in_args.traffic_file + "_" +
time.strftime('%m_%d_%H_%M_%S', time.localtime(time.time()))),
"PATH_TO_DATA": os.path.join("data", template, str(road_net))
}
trainer = LLM_Inference(dic_agent_conf_extra,
merge(dic_traffic_env_conf, dic_traffic_env_conf_extra),
dic_path_extra,
f'{template}-{road_net}', in_args.traffic_file.split(".")[0])
trainer.train_test()
if __name__ == "__main__":
args = parse_args()
main(args)