-
Notifications
You must be signed in to change notification settings - Fork 1
/
normalization.py
117 lines (85 loc) · 3.72 KB
/
normalization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import argparse
import numpy as np
from PIL import Image
def normalize_staining(img, save_file=None, Io=240, alpha=1, beta=0.15):
''' Normalize staining appearence of H&E stained images
Example use:
see test.py
Input:
I: RGB input image
Io: (optional) transmitted light intensity
Output:
Inorm: normalized image
H: hematoxylin image
E: eosin image
Reference:
A method for normalizing histology slides for quantitative analysis. M.
Macenko et al., ISBI 2009
'''
HERef = np.array([[0.5626, 0.2159],
[0.7201, 0.8012],
[0.4062, 0.5581]])
maxCRef = np.array([1.9705, 1.0308])
# define height and width of image
h, w, c = img.shape
# reshape image
img = img.reshape((-1,3))
# calculate optical density
OD = -np.log((img.astype(float)+1)/Io)
# remove transparent pixels
ODhat = OD[~np.any(OD<beta, axis=1)]
# compute eigenvectors
eigvals, eigvecs = np.linalg.eigh(np.cov(ODhat.T))
#eigvecs *= -1
#project on the plane spanned by the eigenvectors corresponding to the two
# largest eigenvalues
That = ODhat.dot(eigvecs[:,1:3])
phi = np.arctan2(That[:,1],That[:,0])
minPhi = np.percentile(phi, alpha)
maxPhi = np.percentile(phi, 100-alpha)
vMin = eigvecs[:,1:3].dot(np.array([(np.cos(minPhi), np.sin(minPhi))]).T)
vMax = eigvecs[:,1:3].dot(np.array([(np.cos(maxPhi), np.sin(maxPhi))]).T)
# a heuristic to make the vector corresponding to hematoxylin first and the
# one corresponding to eosin second
if vMin[0] > vMax[0]:
HE = np.array((vMin[:,0], vMax[:,0])).T
else:
HE = np.array((vMax[:,0], vMin[:,0])).T
# rows correspond to channels (RGB), columns to OD values
Y = np.reshape(OD, (-1, 3)).T
# determine concentrations of the individual stains
C = np.linalg.lstsq(HE,Y, rcond=None)[0]
# normalize stain concentrations
maxC = np.array([np.percentile(C[0,:], 99), np.percentile(C[1,:],99)])
tmp = np.divide(maxC,maxCRef)
C2 = np.divide(C,tmp[:, np.newaxis])
# recreate the image using reference mixing matrix
Inorm = np.multiply(Io, np.exp(-HERef.dot(C2)))
Inorm[Inorm>255] = 254
Inorm = np.reshape(Inorm.T, (h, w, 3)).astype(np.uint8)
# # unmix hematoxylin and eosin
# H = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,0], axis=1).dot(np.expand_dims(C2[0,:], axis=0))))
# H[H>255] = 254
# H = np.reshape(H.T, (h, w, 3)).astype(np.uint8)
# E = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,1], axis=1).dot(np.expand_dims(C2[1,:], axis=0))))
# E[E>255] = 254
# E = np.reshape(E.T, (h, w, 3)).astype(np.uint8)
if save_file is not None:
Image.fromarray(Inorm).save(save_file+'.png')
# Image.fromarray(H).save(save_file+'_H.png')
# Image.fromarray(E).save(save_file+'_E.png')
return Inorm #, H, E
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--imageFile', type=str, default='example1.tif', help='RGB image file')
parser.add_argument('--saveFile', type=str, default='output', help='save file')
parser.add_argument('--Io', type=int, default=240)
parser.add_argument('--alpha', type=float, default=1)
parser.add_argument('--beta', type=float, default=0.15)
args = parser.parse_args()
img = np.array(Image.open(args.imageFile))
normalize_staining(img = img,
save_file = args.saveFile,
Io = args.Io,
alpha = args.alpha,
beta = args.beta)