-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic2d.nim
852 lines (689 loc) · 24.9 KB
/
basic2d.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Robert Persson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import math
import strutils
## Basic 2d support with vectors, points, matrices and some basic utilities.
## Vectors are implemented as direction vectors, ie. when transformed with a matrix
## the translation part of matrix is ignored.
##
## Quick start example:
##
## # Create a matrix wich first rotates, then scales and at last translates
##
## var m:TMatrix2d=rotate(DEG90) & scale(2.0) & move(100.0,200.0)
##
## # Create a 2d point at (100,0) and a vector (5,2)
##
## var pt:TPoint2d=point2d(100.0,0.0)
##
## var vec:TVector2d=vector2d(5.0,2.0)
##
##
## pt &= m # transforms pt in place
##
## var pt2:TPoint2d=pt & m #concatenates pt with m and returns a new point
##
## var vec2:TVEctor2d=vec & m #concatenates vec with m and returns a new vector
const
DEG360* = PI * 2.0
## 360 degrees in radians.
DEG270* = PI * 1.5
## 270 degrees in radians.
DEG180* = PI
## 180 degrees in radians.
DEG90* = PI / 2.0
## 90 degrees in radians.
DEG60* = PI / 3.0
## 60 degrees in radians.
DEG45* = PI / 4.0
## 45 degrees in radians.
DEG30* = PI / 6.0
## 30 degrees in radians.
DEG15* = PI / 12.0
## 15 degrees in radians.
RAD2DEGCONST = 180.0 / PI
## used internally by DegToRad and RadToDeg
type
TMatrix2d* = object
## Implements a row major 2d matrix, which means
## transformations are applied the order they are concatenated.
## The rightmost column of the 3x3 matrix is left out since normally
## not used for geometric transformations in 2d.
ax*,ay*,bx*,by*,tx*,ty*:float
TPoint2d* = object
## Implements a non-homegeneous 2d point stored as
## an `x` coordinate and an `y` coordinate.
x*,y*:float
TVector2d* = object
## Implements a 2d **direction vector** stored as
## an `x` coordinate and an `y` coordinate. Direction vector means,
## that when transforming a vector with a matrix, the translational
## part of the matrix is ignored.
x*,y*:float
# Some forward declarations...
proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d {.noInit.}
## Creates a new matrix.
## `ax`,`ay` is the local x axis
## `bx`,`by` is the local y axis
## `tx`,`ty` is the translation
proc vector2d*(x,y:float):TVector2d {.noInit,inline.}
## Returns a new vector (`x`,`y`)
proc point2d*(x,y:float):TPoint2d {.noInit,inline.}
## Returns a new point (`x`,`y`)
let
IDMATRIX2D*:TMatrix2d=matrix2d(1.0,0.0,0.0,1.0,0.0,0.0)
## Quick access to an identity matrix
ORIGO2D*:TPoint2d=Point2d(0.0,0.0)
## Quick acces to point (0,0)
XAXIS2D*:TVector2d=vector2d(1.0,0.0)
## Quick acces to an 2d x-axis unit vector
YAXIS2D*:TVector2d=vector2d(0.0,1.0)
## Quick acces to an 2d y-axis unit vector
# ***************************************
# Private utils
# ***************************************
proc rtos(val:float):string=
return formatFloat(val,ffDefault,0)
proc safeArccos(v:float):float=
## assumes v is in range 0.0-1.0, but clamps
## the value to avoid out of domain errors
## due to rounding issues
return arccos(clamp(v,-1.0,1.0))
template makeBinOpVector*(s:expr)=
## implements binary operators + , - , * and / for vectors
proc s*(a,b:TVector2d):TVector2d {.inline,noInit.} = vector2d(s(a.x,b.x),s(a.y,b.y))
proc s*(a:TVector2d,b:float):TVector2d {.inline,noInit.} = vector2d(s(a.x,b),s(a.y,b))
proc s*(a:float,b:TVector2d):TVector2d {.inline,noInit.} = vector2d(s(a,b.x),s(a,b.y))
template makeBinOpAssignVector*(s:expr)=
## implements inplace binary operators += , -= , /= and *= for vectors
proc s*(a:var TVector2d,b:TVector2d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y)
proc s*(a:var TVector2d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b)
# ***************************************
# TMatrix2d implementation
# ***************************************
proc setElements*(t:var TMatrix2d,ax,ay,bx,by,tx,ty:float) {.inline.}=
## Sets arbitrary elements in an exisitng matrix.
t.ax=ax
t.ay=ay
t.bx=bx
t.by=by
t.tx=tx
t.ty=ty
proc matrix2d*(ax,ay,bx,by,tx,ty:float):TMatrix2d =
result.setElements(ax,ay,bx,by,tx,ty)
proc `&`*(a,b:TMatrix2d):TMatrix2d {.noInit.} = #concatenate matrices
## Concatenates matrices returning a new matrix.
# | a.AX a.AY 0 | | b.AX b.AY 0 |
# | a.BX a.BY 0 | * | b.BX b.BY 0 |
# | a.TX a.TY 1 | | b.TX b.TY 1 |
result.setElements(
a.ax * b.ax + a.ay * b.bx,
a.ax * b.ay + a.ay * b.by,
a.bx * b.ax + a.by * b.bx,
a.bx * b.ay + a.by * b.by,
a.tx * b.ax + a.ty * b.bx + b.tx,
a.tx * b.ay + a.ty * b.by + b.ty)
proc scale*(s:float):TMatrix2d {.noInit.} =
## Returns a new scale matrix.
result.setElements(s,0,0,s,0,0)
proc scale*(s:float,org:TPoint2d):TMatrix2d {.noInit.} =
## Returns a new scale matrix using, `org` as scale origin.
result.setElements(s,0,0,s,org.x-s*org.x,org.y-s*org.y)
proc stretch*(sx,sy:float):TMatrix2d {.noInit.} =
## Returns new a stretch matrix, which is a
## scale matrix with non uniform scale in x and y.
result.setElements(sx,0,0,sy,0,0)
proc stretch*(sx,sy:float,org:TPoint2d):TMatrix2d {.noInit.} =
## Returns a new stretch matrix, which is a
## scale matrix with non uniform scale in x and y.
## `org` is used as stretch origin.
result.setElements(sx,0,0,sy,org.x-sx*org.x,org.y-sy*org.y)
proc move*(dx,dy:float):TMatrix2d {.noInit.} =
## Returns a new translation matrix.
result.setElements(1,0,0,1,dx,dy)
proc move*(v:TVector2d):TMatrix2d {.noInit.} =
## Returns a new translation matrix from a vector.
result.setElements(1,0,0,1,v.x,v.y)
proc rotate*(rad:float):TMatrix2d {.noInit.} =
## Returns a new rotation matrix, which
## represents a rotation by `rad` radians
let
s=sin(rad)
c=cos(rad)
result.setElements(c,s,-s,c,0,0)
proc rotate*(rad:float,org:TPoint2d):TMatrix2d {.noInit.} =
## Returns a new rotation matrix, which
## represents a rotation by `rad` radians around
## the origin `org`
let
s=sin(rad)
c=cos(rad)
result.setElements(c,s,-s,c,org.x+s*org.y-c*org.x,org.y-c*org.y-s*org.x)
proc mirror*(v:TVector2d):TMatrix2d {.noInit.} =
## Returns a new mirror matrix, mirroring
## around the line that passes through origo and
## has the direction of `v`
let
sqx=v.x*v.x
sqy=v.y*v.y
nd=1.0/(sqx+sqy) #used to normalize invector
xy2=v.x*v.y*2.0*nd
sqd=nd*(sqx-sqy)
if nd==inf or nd==neginf:
return IDMATRIX2D #mirroring around a zero vector is arbitrary=>just use identity
result.setElements(
sqd,xy2,
xy2,-sqd,
0.0,0.0)
proc mirror*(v:TVector2d,org:TPoint2d):TMatrix2d {.noInit.} =
## Returns a new mirror matrix, mirroring
## around the line that passes through `org` and
## has the direction of `v`
let
sqx=v.x*v.x
sqy=v.y*v.y
nd=1.0/(sqx+sqy) #used to normalize invector
xy2=v.x*v.y*2.0*nd
sqd=nd*(sqx-sqy)
if nd==inf or nd==neginf:
return IDMATRIX2D #mirroring around a zero vector is arbitrary=>just use identity
result.setElements(
sqd,xy2,
xy2,-sqd,
org.x-org.y*xy2-org.x*sqd,org.y-org.x*xy2+org.y*sqd)
proc skew*(xskew,yskew:float):TMatrix2d {.noInit.} =
## Returns a new skew matrix, which has its
## x axis rotated `xskew` radians from the local x axis, and
## y axis rotated `yskew` radians from the local y axis
result.setElements(cos(yskew),sin(yskew),-sin(xskew),cos(xskew),0,0)
proc `$`* (t:TMatrix2d):string {.noInit.} =
## Returns a string representation of the matrix
return rtos(t.ax) & "," & rtos(t.ay) &
"," & rtos(t.bx) & "," & rtos(t.by) &
"," & rtos(t.tx) & "," & rtos(t.ty)
proc isUniform*(t:TMatrix2d,tol=1.0e-6):bool=
## Checks if the transform is uniform, that is
## perpendicular axes of equal lenght, which means (for example)
## it cannot transform a circle into an ellipse.
## `tol` is used as tolerance for both equal length comparison
## and perp. comparison.
#dot product=0 means perpendicular coord. system:
if abs(t.ax*t.bx+t.ay*t.by)<=tol:
#subtract squared lengths of axes to check if uniform scaling:
if abs((t.ax*t.ax+t.ay*t.ay)-(t.bx*t.bx+t.by*t.by))<=tol:
return true
return false
proc determinant*(t:TMatrix2d):float=
## Computes the determinant of the matrix.
#NOTE: equivalent with perp.dot product for two 2d vectors
return t.ax*t.by-t.bx*t.ay
proc isMirroring* (m:TMatrix2d):bool=
## Checks if the `m` is a mirroring matrix,
## which means it will reverse direction of a curve transformed with it
return m.determinant<0.0
proc inverse*(m:TMatrix2d):TMatrix2d {.noInit.} =
## Returns a new matrix, which is the inverse of the matrix
## If the matrix is not invertible (determinant=0), an EDivByZero
## will be raised.
let d=m.determinant
if d==0.0:
raise newException(EDivByZero,"Cannot invert a zero determinant matrix")
result.setElements(
m.by/d,-m.ay/d,
-m.bx/d,m.ax/d,
(m.bx*m.ty-m.by*m.tx)/d,
(m.ay*m.tx-m.ax*m.ty)/d)
proc equals*(m1:TMatrix2d,m2:TMatrix2d,tol=1.0e-6):bool=
## Checks if all elements of `m1`and `m2` is equal within
## a given tolerance `tol`.
return
abs(m1.ax-m2.ax)<=tol and
abs(m1.ay-m2.ay)<=tol and
abs(m1.bx-m2.bx)<=tol and
abs(m1.by-m2.by)<=tol and
abs(m1.tx-m2.tx)<=tol and
abs(m1.ty-m2.ty)<=tol
proc `=~`*(m1,m2:TMatrix2d):bool=
## Checks if `m1`and `m2` is aproximately equal, using a
## tolerance of 1e-6.
equals(m1,m2)
proc isIdentity*(m:TMatrix2d,tol=1.0e-6):bool=
## Checks is a matrix is approximately an identity matrix,
## using `tol` as tolerance for each element.
return equals(m,IDMATRIX2D,tol)
# ***************************************
# TVector2d implementation
# ***************************************
proc vector2d*(x,y:float):TVector2d = #forward decl.
result.x=x
result.y=y
proc polarVector2d*(ang:float,len:float):TVector2d {.noInit.} =
## Returns a new vector with angle `ang` and magnitude `len`
result.x=cos(ang)*len
result.y=sin(ang)*len
proc slopeVector2d*(slope:float,len:float):TVector2d {.noInit.} =
## Returns a new vector having slope (dy/dx) given by
## `slope`, and a magnitude of `len`
let ang=arctan(slope)
result.x=cos(ang)*len
result.y=sin(ang)*len
proc len*(v:TVector2d):float {.inline.}=
## Returns the length of the vector.
sqrt(v.x*v.x+v.y*v.y)
proc `len=`*(v:var TVector2d,newlen:float) {.noInit.} =
## Sets the length of the vector, keeping its angle.
## If the vector has zero length before chenging it's length,
## an arbitrary vector of the requested length is returned.
let fac=newlen/v.len
if newlen==0.0:
v.x=0.0
v.y=0.0
return
if fac==inf or fac==neginf:
#to short for float accuracy
#do as good as possible:
v.x=newlen
v.y=0.0
else:
v.x*=fac
v.y*=fac
proc sqrLen*(v:TVector2d):float {.inline.}=
## Computes the squared length of the vector, which is
## faster than computing the absolute length.
v.x*v.x+v.y*v.y
proc angle*(v:TVector2d):float=
## Returns the angle of the vector.
## (The counter clockwise plane angle between posetive x axis and `v`)
result=arctan2(v.y,v.x)
if result<0.0: result+=DEG360
proc `$` *(v:TVector2d):string=
## String representation of `v`
result=rtos(v.x)
result.add(",")
result.add(rtos(v.y))
proc `&` *(v:TVector2d,m:TMatrix2d):TVector2d {.noInit.} =
## Concatenate vector `v` with a transformation matrix.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY 0 |
# | X Y 1 | * | BX BY 0 |
# | 0 0 1 |
result.x=v.x*m.ax+v.y*m.bx
result.y=v.x*m.ay+v.y*m.by
proc `&=`*(v:var TVector2d,m:TMatrix2d) {.inline.}=
## Applies transformation `m` onto `v` in place.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY 0 |
# | X Y 1 | * | BX BY 0 |
# | 0 0 1 |
let newx=v.x*m.ax+v.y*m.bx
v.y=v.x*m.ay+v.y*m.by
v.x=newx
proc tryNormalize*(v:var TVector2d):bool=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
let mag=v.len
if mag==0.0:
return false
let
newx=v.x/mag
newy=v.y/mag
v.x=newx
v.y=newy
return true
proc normalize*(v:var TVector2d) {.inline.}=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length, an EDivByZero will be raised.
if not tryNormalize(v):
raise newException(EDivByZero,"Cannot normalize zero length vector")
proc transformNorm*(v:var TVector2d,t:TMatrix2d)=
## Applies transformation `m` onto `v` in place, assuming `v` is a normal.
## The length of the resulting vector is undefined,
## but most likely not the same as the input vector.
## If the matrix is not invertible (determinant=0), an EDivByZero
## will be raised.
# transforming a normal is done by transforming
# by the transpose of the inverse of the original matrix
# this can be heavily optimized by precompute and inline
# | | AX AY 0 | ^-1| ^T
# | X Y 1 | * | | BX BY 0 | |
# | | 0 0 1 | |
let d=t.determinant
if(d==0.0):
raise newException(EDivByZero,"Matrix is not invertible")
let newx = (t.by*v.x-t.ay*v.y)/d
v.y = (t.ax*v.y-t.bx*v.x)/d
v.x = newx
proc transformInv*(v:var TVector2d,t:TMatrix2d)=
## Applies inverse of a transformation `m` to `v` in place.
## This is faster than creating an inverse matrix and apply() it.
## Transforming a vector ignores the translational part
## of the matrix. If the matrix is not invertible (determinant=0), an EDivByZero
## will be raised.
let d=t.determinant
if(d==0.0):
raise newException(EDivByZero,"Matrix is not invertible")
let newx=(t.by*v.x-t.bx*v.y)/d
v.y = (t.ax*v.y-t.ay*v.x)/d
v.x = newx
proc transformNormInv*(v:var TVector2d,t:TMatrix2d)=
## Applies inverse of a transformation `m` to `v` in place,
## assuming `v` is a normal. This is faster than creating an inverse
## matrix and transformNorm(...) it. Transforming a vector ignores the
## translational part of the matrix.
# normal inverse transform is done by transforming
# by the inverse of the transpose of the inverse of the org. matrix
# which is equivalent with transforming with the transpose.
# | | | AX AY 0 |^-1|^T|^-1 | AX BX 0 |
# | X Y 1 | * | | | BX BY 0 | | | = | X Y 1 | * | AY BY 0 |
# | | | 0 0 1 | | | | 0 0 1 |
# This can be heavily reduced to:
let newx=t.ay*v.y+t.ax*v.x
v.y=t.by*v.y+t.bx*v.x
v.x=newx
proc rotate90*(v:var TVector2d) {.inline.}=
## Quickly rotates vector `v` 90 degrees counter clockwise,
## without using any trigonometrics.
swap(v.x,v.y)
v.x= -v.x
proc rotate180*(v:var TVector2d){.inline.}=
## Quickly rotates vector `v` 180 degrees counter clockwise,
## without using any trigonometrics.
v.x= -v.x
v.y= -v.y
proc rotate270*(v:var TVector2d) {.inline.}=
## Quickly rotates vector `v` 270 degrees counter clockwise,
## without using any trigonometrics.
swap(v.x,v.y)
v.y= -v.y
proc rotate*(v:var TVector2d,rad:float) =
## Rotates vector `v` `rad` radians in place.
let
s=sin(rad)
c=cos(rad)
newx=c*v.x-s*v.y
v.y=c*v.y+s*v.x
v.x=newx
proc scale*(v:var TVector2d,fac:float){.inline.}=
## Scales vector `v` `rad` radians in place.
v.x*=fac
v.y*=fac
proc stretch*(v:var TVector2d,facx,facy:float){.inline.}=
## Stretches vector `v` `facx` times horizontally,
## and `facy` times vertically.
v.x*=facx
v.y*=facy
proc mirror*(v:var TVector2d,mirrvec:TVector2d){.inline.}=
## Mirrors vector `v` using `mirrvec` as mirror direction.
let
sqx=mirrvec.x*mirrvec.x
sqy=mirrvec.y*mirrvec.y
nd=1.0/(sqx+sqy) #used to normalize invector
xy2=mirrvec.x*mirrvec.y*2.0*nd
sqd=nd*(sqx-sqy)
if nd==inf or nd==neginf:
return #mirroring around a zero vector is arbitrary=>keep as is is fastest
let newx=xy2*v.y+sqd*v.x
v.y=v.x*xy2-sqd*v.y
v.x=newx
proc `-` *(v:TVector2d):TVector2d=
## Negates a vector
result.x= -v.x
result.y= -v.y
# declare templated binary operators
makeBinOpVector(`+`)
makeBinOpVector(`-`)
makeBinOpVector(`*`)
makeBinOpVector(`/`)
makeBinOpAssignVector(`+=`)
makeBinOpAssignVector(`-=`)
makeBinOpAssignVector(`*=`)
makeBinOpAssignVector(`/=`)
proc dot*(v1,v2:TVector2d):float=
## Computes the dot product of two vectors.
## Returns 0.0 if the vectors are perpendicular.
return v1.x*v2.x+v1.y*v2.y
proc cross*(v1,v2:TVector2d):float=
## Computes the cross product of two vectors, also called
## the 'perpendicualar dot product' in 2d. Returns 0.0 if the vectors
## are parallel.
return v1.x*v2.y-v1.y*v2.x
proc equals*(v1,v2:TVector2d,tol=1.0e-6):bool=
## Checks if two vectors approximately equals with a tolerance.
return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol
proc `=~` *(v1,v2:TVector2d):bool=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(v1,v2)
proc angleTo*(v1,v2:TVector2d):float=
## Returns the smallest of the two possible angles between `v1` and `v2` in radians.
var
nv1=v1
nv2=v2
if not nv1.tryNormalize or not nv2.tryNormalize:
return 0.0 # zero length vector has zero angle to any other vector
return safeArccos(dot(nv1,nv2))
proc angleCCW*(v1,v2:TVector2d):float=
## Returns the counter clockwise plane angle from `v1` to `v2`,
## in range 0-PI
let a=v1.angleTo(v2)
if v1.cross(v2)>=0.0:
return a
return DEG360-a
proc angleCW*(v1,v2:TVector2d):float=
## Returns the clockwise plane angle from `v1` to `v2`,
## in range 0-PI
let a=v1.angleTo(v2)
if v1.cross(v2)<=0.0:
return a
return DEG360-a
proc turnAngle*(v1,v2:TVector2d):float=
## Returns the amount v1 should be rotated (in radians) to equal v2,
## in range -PI to PI
let a=v1.angleTo(v2)
if v1.cross(v2)<=0.0:
return -a
return a
# ***************************************
# TPoint2d implementation
# ***************************************
proc point2d*(x,y:float):TPoint2d =
result.x=x
result.y=y
proc sqrDist*(a,b:TPoint2d):float=
## Computes the squared distance between `a`and `b`
let dx=b.x-a.x
let dy=b.y-a.y
result=dx*dx+dy*dy
proc dist*(a,b:TPoint2d):float {.inline.}=
## Computes the absolute distance between `a`and `b`
result=sqrt(sqrDist(a,b))
proc angle*(a,b:TPoint2d):float=
## Computes the angle of the vector `b`-`a`
let dx=b.x-a.x
let dy=b.y-a.y
result=arctan2(dy,dx)
if result<0:
result += DEG360
proc `$` *(p:TPoint2d):string=
## String representation of `p`
result=rtos(p.x)
result.add(",")
result.add(rtos(p.y))
proc `&`*(p:TPoint2d,t:TMatrix2d):TPoint2d {.noInit,inline.} =
## Concatenates a point `p` with a transform `t`,
## resulting in a new, transformed point.
# | AX AY 0 |
# | X Y 1 | * | BX BY 0 |
# | TX TY 1 |
result.x=p.x*t.ax+p.y*t.bx+t.tx
result.y=p.x*t.ay+p.y*t.by+t.ty
proc `&=` *(p:var TPoint2d,t:TMatrix2d) {.inline.}=
## Applies transformation `t` onto `p` in place.
let newx=p.x*t.ax+p.y*t.bx+t.tx
p.y=p.x*t.ay+p.y*t.by+t.ty
p.x=newx
proc transformInv*(p:var TPoint2d,t:TMatrix2d){.inline.}=
## Applies the inverse of transformation `t` onto `p` in place.
## If the matrix is not invertable (determinant=0) , EDivByZero will
## be raised.
# | AX AY 0 | ^-1
# | X Y 1 | * | BX BY 0 |
# | TX TY 1 |
let d=t.determinant
if d==0.0:
raise newException(EDivByZero,"Cannot invert a zero determinant matrix")
let
newx= (t.bx*t.ty-t.by*t.tx+p.x*t.by-p.y*t.bx)/d
p.y = -(t.ax*t.ty-t.ay*t.tx+p.x*t.ay-p.y*t.ax)/d
p.x=newx
proc `+`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} =
## Adds a vector `v` to a point `p`, resulting
## in a new point.
result.x=p.x+v.x
result.y=p.y+v.y
proc `+=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} =
## Adds a vector `v` to a point `p` in place.
p.x+=v.x
p.y+=v.y
proc `-`*(p:TPoint2d,v:TVector2d):TPoint2d {.noInit,inline.} =
## Subtracts a vector `v` from a point `p`, resulting
## in a new point.
result.x=p.x-v.x
result.y=p.y-v.y
proc `-`*(p1,p2:TPoint2d):TVector2d {.noInit,inline.} =
## Subtracts `p2`from `p1` resulting in a difference vector.
result.x=p1.x-p2.x
result.y=p1.y-p2.y
proc `-=`*(p:var TPoint2d,v:TVector2d) {.noInit,inline.} =
## Subtracts a vector `v` from a point `p` in place.
p.x-=v.x
p.y-=v.y
proc equals(p1,p2:TPoint2d,tol=1.0e-6):bool {.inline.}=
## Checks if two points approximately equals with a tolerance.
return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol
proc `=~`*(p1,p2:TPoint2d):bool {.inline.}=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(p1,p2)
proc polar*(p:TPoint2d,ang,dist:float):TPoint2d {.noInit.} =
## Returns a point with a given angle and distance away from `p`
result.x=p.x+cos(ang)*dist
result.y=p.y+sin(ang)*dist
proc rotate*(p:var TPoint2d,rad:float)=
## Rotates a point in place `rad` radians around origo.
let
c=cos(rad)
s=sin(rad)
newx=p.x*c-p.y*s
p.y=p.y*c+p.x*s
p.x=newx
proc rotate*(p:var TPoint2d,rad:float,org:TPoint2d)=
## Rotates a point in place `rad` radians around another point `org`
let
c=cos(rad)
s=sin(rad)
newx=(p.x - org.x) * c - (p.y - org.y) * s + org.x
p.y=(p.y - org.y) * c + (p.x - org.x) * s + org.y
p.x=newx
proc scale*(p:var TPoint2d,fac:float) {.inline.}=
## Scales a point in place `fac` times with world origo as origin.
p.x*=fac
p.y*=fac
proc scale*(p:var TPoint2d,fac:float,org:TPoint2d){.inline.}=
## Scales the point in place `fac` times with `org` as origin.
p.x=(p.x - org.x) * fac + org.x
p.y=(p.y - org.y) * fac + org.y
proc stretch*(p:var TPoint2d,facx,facy:float){.inline.}=
## Scales a point in place non uniformly `facx` and `facy` times with world origo as origin.
p.x*=facx
p.y*=facy
proc stretch*(p:var TPoint2d,facx,facy:float,org:TPoint2d){.inline.}=
## Scales the point in place non uniformly `facx` and `facy` times with `org` as origin.
p.x=(p.x - org.x) * facx + org.x
p.y=(p.y - org.y) * facy + org.y
proc move*(p:var TPoint2d,dx,dy:float){.inline.}=
## Translates a point `dx`, `dy` in place.
p.x+=dx
p.y+=dy
proc move*(p:var TPoint2d,v:TVector2d){.inline.}=
## Translates a point with vector `v` in place.
p.x+=v.x
p.y+=v.y
# ***************************************
# Misc. 2d utilities
# ***************************************
proc transform*(x,y:var float,m:TMatrix2d,translate=false)=
## Concatenates vector x,y with matrix m in place, optionally
## using the translation part of the matrix.
if translate: # positional style transform
let newx=x*m.ax+y*m.bx+m.tx
y=x*m.ay+y*m.by+m.ty
x=newx
else: # delta style transform
let newx=x*m.ax+y*m.bx
y=x*m.ay+y*m.by
x=newx
proc sgnArea*(a,b,c:TPoint2d):float=
## Computes the signed area of the triangle a,b,c.
## result>0.0 for counter clockwise triangle
## result<0.0 for clockwise triangle
## This is commonly used to determinate side of a point with respect to a line.
return ((b.x - c.x) * (b.y - a.y)-(b.y - c.y) * (b.x - a.x))*0.5
proc area*(a,b,c:TPoint2d):float=
## Computes the area of the triangle a,b,c
return abs(sgnArea(a,b,c))
proc closestPoint*(p:TPoint2d,pts:varargs[TPoint2d]):TPoint2d=
## Returns a point selected from `pts`, that has the closest euclidean distance to `p`
assert(pts.len>0) # must have at least one point
var
bestidx=0
bestdist=p.sqrdist(pts[0])
curdist:float
for idx in 1..high(pts):
curdist=p.sqrdist(pts[idx])
if curdist<bestdist:
bestidx=idx
bestdist=curdist
result=pts[bestidx]
proc normAngle*(ang:float):float=
## Returns an angle in radians, that is equal to `ang`,
## but in the range 0 to <2*PI
if ang>=0.0 and ang<DEG360:
return ang
return ang mod DEG360
proc degToRad*(deg:float):float=
## converts `deg` degrees to radians
deg / RAD2DEGCONST
proc radToDeg*(rad:float):float=
## converts `rad` radians to degrees
rad * RAD2DEGCONST
proc bisect*(v1,v2:TVector2d):tuple[vec:TVector2d,success:bool]=
## Computes the bisector between v1 and v2 as a normalize vector `vec`
## This can fail if any of `v1` or `v2` has zero length, in which
## case `success` is set to false.
let
vmag1=v1.len
vmag2=v2.len
if vmag1==0.0 or vmag2==0.0:
result.success=false
return
let
x1=v1.x/vmag1
y1=v1.y/vmag1
x2=v2.x/vmag2
y2=v2.y/vmag2
result=(vector2d((x1 + x2) * 0.5, (y1 + y2) * 0.5) , true)
if not result.vec.tryNormalize():
# This can happen if vectors are colinear. In this special case
# there are actually two bisectors, we select just
# one of them (x1,y1 rotated 90 degrees).
result.vec=vector2d(y1,-x1)