-
Notifications
You must be signed in to change notification settings - Fork 0
/
basic3d.nim
1025 lines (851 loc) · 29.9 KB
/
basic3d.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
#
# Nimrod's Runtime Library
# (c) Copyright 2013 Robert Persson
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
import math
import strutils
## Basic 3d support with vectors, points, matrices and some basic utilities.
## Vectors are implemented as direction vectors, ie. when transformed with a matrix
## the translation part of matrix is ignored. The coordinate system used is
## right handed, because its compatible with 2d coordinate system (rotation around
## zaxis equals 2d rotation)
##
##
## Quick start example:
##
## # Create a matrix wich first rotates, then scales and at last translates
##
## var m:TMatrix3d=rotate(PI,vector3d(1,1,2.5)) & scale(2.0) & move(100.0,200.0,300.0)
##
## # Create a 3d point at (100,150,200) and a vector (5,2,3)
##
## var pt:TPoint3d=point3d(100.0,150.0,200.0)
##
## var vec:TVector3d=vector3d(5.0,2.0,3.0)
##
##
## pt &= m # transforms pt in place
##
## var pt2:TPoint3d=pt & m #concatenates pt with m and returns a new point
##
## var vec2:TVector3d=vec & m #concatenates vec with m and returns a new vector
type
TMatrix3d* =object
## Implements a row major 3d matrix, which means
## transformations are applied the order they are concatenated.
## This matrix is stored as an 4x4 matrix:
## [ ax ay az aw ]
## [ bx by bz bw ]
## [ cx cy cz cw ]
## [ tx ty tz tw ]
ax*,ay*,az*,aw*, bx*,by*,bz*,bw*, cx*,cy*,cz*,cw*, tx*,ty*,tz*,tw*:float
TPoint3d* = object
## Implements a non-homegeneous 2d point stored as
## an `x` , `y` and `z` coordinate.
x*,y*,z*:float
TVector3d* = object
## Implements a 3d **direction vector** stored as
## an `x` , `y` and `z` coordinate. Direction vector means,
## that when transforming a vector with a matrix, the translational
## part of the matrix is ignored.
x*,y*,z*:float
# Some forward declarations
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d {.noInit.}
## Creates a new 4x4 3d transformation matrix.
## `ax`,`ay`,`az` is the local x axis
## `bx`,`by`,`bz` is the local y axis
## `tx`,`ty`,`tz` is the translation
proc vector3d*(x,y,z:float):TVector3d {.noInit,inline.}
## Returns a new 3d vector (`x`,`y`,`z`)
proc point3d*(x,y,z:float):TPoint3d {.noInit,inline.}
## Returns a new 4d point (`x`,`y`,`z`)
proc tryNormalize*(v:var TVector3d):bool
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
let
IDMATRIX*:TMatrix3d=matrix3d(
1.0,0.0,0.0,0.0,
0.0,1.0,0.0,0.0,
0.0,0.0,1.0,0.0,
0.0,0.0,0.0,1.0)
## Quick access to a 3d identity matrix
ORIGO*:TPoint3d=point3d(0.0,0.0,0.0)
## Quick access to point (0,0)
XAXIS*:TVector3d=vector3d(1.0,0.0,0.0)
## Quick access to an 3d x-axis unit vector
YAXIS*:TVector3d=vector3d(0.0,1.0,0.0)
## Quick access to an 3d y-axis unit vector
ZAXIS*:TVector3d=vector3d(0.0,0.0,1.0)
## Quick access to an 3d z-axis unit vector
# ***************************************
# Private utils
# ***************************************
proc rtos(val:float):string=
return formatFloat(val,ffDefault,0)
proc safeArccos(v:float):float=
## assumes v is in range 0.0-1.0, but clamps
## the value to avoid out of domain errors
## due to rounding issues
return arccos(clamp(v,-1.0,1.0))
template makeBinOpVector(s:expr)=
## implements binary operators + , - , * and / for vectors
proc s*(a,b:TVector3d):TVector3d {.inline,noInit.} = vector3d(s(a.x,b.x),s(a.y,b.y),s(a.z,b.z))
proc s*(a:TVector3d,b:float):TVector3d {.inline,noInit.} = vector3d(s(a.x,b),s(a.y,b),s(a.z,b))
proc s*(a:float,b:TVector3d):TVector3d {.inline,noInit.} = vector3d(s(a,b.x),s(a,b.y),s(a,b.z))
template makeBinOpAssignVector(s:expr)=
## implements inplace binary operators += , -= , /= and *= for vectors
proc s*(a:var TVector3d,b:TVector3d) {.inline.} = s(a.x,b.x) ; s(a.y,b.y) ; s(a.z,b.z)
proc s*(a:var TVector3d,b:float) {.inline.} = s(a.x,b) ; s(a.y,b) ; s(a.z,b)
# ***************************************
# TMatrix3d implementation
# ***************************************
proc setElements*(t:var TMatrix3d,ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float) {.inline.}=
## Sets arbitrary elements in an exisitng matrix.
t.ax=ax
t.ay=ay
t.az=az
t.aw=aw
t.bx=bx
t.by=by
t.bz=bz
t.bw=bw
t.cx=cx
t.cy=cy
t.cz=cz
t.cw=cw
t.tx=tx
t.ty=ty
t.tz=tz
t.tw=tw
proc matrix3d*(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw:float):TMatrix3d =
result.setElements(ax,ay,az,aw,bx,by,bz,bw,cx,cy,cz,cw,tx,ty,tz,tw)
proc `&`*(a,b:TMatrix3d):TMatrix3d {.noinit.} =
## Concatenates matrices returning a new matrix.
result.setElements(
a.aw*b.tx+a.az*b.cx+a.ay*b.bx+a.ax*b.ax,
a.aw*b.ty+a.az*b.cy+a.ay*b.by+a.ax*b.ay,
a.aw*b.tz+a.az*b.cz+a.ay*b.bz+a.ax*b.az,
a.aw*b.tw+a.az*b.cw+a.ay*b.bw+a.ax*b.aw,
a.bw*b.tx+a.bz*b.cx+a.by*b.bx+a.bx*b.ax,
a.bw*b.ty+a.bz*b.cy+a.by*b.by+a.bx*b.ay,
a.bw*b.tz+a.bz*b.cz+a.by*b.bz+a.bx*b.az,
a.bw*b.tw+a.bz*b.cw+a.by*b.bw+a.bx*b.aw,
a.cw*b.tx+a.cz*b.cx+a.cy*b.bx+a.cx*b.ax,
a.cw*b.ty+a.cz*b.cy+a.cy*b.by+a.cx*b.ay,
a.cw*b.tz+a.cz*b.cz+a.cy*b.bz+a.cx*b.az,
a.cw*b.tw+a.cz*b.cw+a.cy*b.bw+a.cx*b.aw,
a.tw*b.tx+a.tz*b.cx+a.ty*b.bx+a.tx*b.ax,
a.tw*b.ty+a.tz*b.cy+a.ty*b.by+a.tx*b.ay,
a.tw*b.tz+a.tz*b.cz+a.ty*b.bz+a.tx*b.az,
a.tw*b.tw+a.tz*b.cw+a.ty*b.bw+a.tx*b.aw)
proc scale*(s:float):TMatrix3d {.noInit.} =
## Returns a new scaling matrix.
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0, 0,0,0,1)
proc scale*(s:float,org:TPoint3d):TMatrix3d {.noInit.} =
## Returns a new scaling matrix using, `org` as scale origin.
result.setElements(s,0,0,0, 0,s,0,0, 0,0,s,0,
org.x-s*org.x,org.y-s*org.y,org.z-s*org.z,1.0)
proc stretch*(sx,sy,sz:float):TMatrix3d {.noInit.} =
## Returns new a stretch matrix, which is a
## scale matrix with non uniform scale in x and y.
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, 0,0,0,1)
proc stretch*(sx,sy,sz:float,org:TPoint3d):TMatrix3d {.noInit.} =
## Returns a new stretch matrix, which is a
## scale matrix with non uniform scale in x and y.
## `org` is used as stretch origin.
result.setElements(sx,0,0,0, 0,sy,0,0, 0,0,sz,0, org.x-sx*org.x,org.y-sy*org.y,org.z-sz*org.z,1)
proc move*(dx,dy,dz:float):TMatrix3d {.noInit.} =
## Returns a new translation matrix.
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, dx,dy,dz,1)
proc move*(v:TVector3d):TMatrix3d {.noInit.} =
## Returns a new translation matrix from a vector.
result.setElements(1,0,0,0, 0,1,0,0, 0,0,1,0, v.x,v.y,v.z,1)
proc rotate*(angle:float,axis:TVector3d):TMatrix3d {.noInit.}=
## Creates a rotation matrix that rotates `angle` radians over
## `axis`, which passes through origo.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize: #simplifies matrix computation below a lot
raise newException(EDivByZero,"Cannot rotate around zero length axis")
let
cs=cos(angle)
si=sin(angle)
omc=1.0-cs
usi=normax.x*si
vsi=normax.y*si
wsi=normax.z*si
u2=normax.x*normax.x
v2=normax.y*normax.y
w2=normax.z*normax.z
uvomc=normax.x*normax.y*omc
uwomc=normax.x*normax.z*omc
vwomc=normax.y*normax.z*omc
result.setElements(
u2+(1.0-u2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
uvomc-wsi, v2+(1.0-v2)*cs, vwomc+usi, 0.0,
uwomc+vsi, vwomc-usi, w2+(1.0-w2)*cs, 0.0,
0.0,0.0,0.0,1.0)
proc rotate*(angle:float,axis:TVector3d,org:TPoint3d):TMatrix3d {.noInit.}=
## Creates a rotation matrix that rotates `angle` radians over
## `axis`, which passes through `org`.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize: #simplifies matrix computation below a lot
raise newException(EDivByZero,"Cannot rotate around zero length axis")
let
u=normax.x
v=normax.y
w=normax.z
u2=u*u
v2=v*v
w2=w*w
cs=cos(angle)
omc=1.0-cs
si=sin(angle)
a=org.x
b=org.y
c=org.z
usi=u*si
vsi=v*si
wsi=w*si
uvomc=normax.x*normax.y*omc
uwomc=normax.x*normax.z*omc
vwomc=normax.y*normax.z*omc
result.setElements(
u2+(v2+w2)*cs, uvomc+wsi, uwomc-vsi, 0.0,
uvomc-wsi, v2+(u2+w2)*cs, vwomc+usi, 0.0,
uwomc+vsi, vwomc-usi, w2+(u2+v2)*cs, 0.0,
(a*(v2+w2)-u*(b*v+c*w))*omc+(b*w-c*v)*si,
(b*(u2+w2)-v*(a*u+c*w))*omc+(c*u-a*w)*si,
(c*(u2+v2)-w*(a*u+b*v))*omc+(a*v-b*u)*si,1.0)
proc rotateX*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the x-axis with `angle` radians,
## which is also called a 'roll' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
1,0,0,0,
0,c,s,0,
0,-s,c,0,
0,0,0,1)
proc rotateY*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the y-axis with `angle` radians,
## which is also called a 'pitch' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
c,0,-s,0,
0,1,0,0,
s,0,c,0,
0,0,0,1)
proc rotateZ*(angle:float):TMatrix3d {.noInit.}=
## Creates a matrix that rotates around the z-axis with `angle` radians,
## which is also called a 'yaw' matrix.
let
c=cos(angle)
s=sin(angle)
result.setElements(
c,s,0,0,
-s,c,0,0,
0,0,1,0,
0,0,0,1)
proc isUniform*(m:TMatrix3d,tol=1.0e-6):bool=
## Checks if the transform is uniform, that is
## perpendicular axes of equal lenght, which means (for example)
## it cannot transform a sphere into an ellipsoid.
## `tol` is used as tolerance for both equal length comparison
## and perpendicular comparison.
#dot product=0 means perpendicular coord. system, check xaxis vs yaxis and xaxis vs zaxis
if abs(m.ax*m.bx+m.ay*m.by+m.az*m.bz)<=tol and abs(m.ax*m.cx+m.ay*m.cy+m.az*m.cz)<=tol:
#subtract squared lengths of axes to check if uniform scaling:
let
sqxlen=(m.ax*m.ax+m.ay*m.ay+m.az*m.az)
sqylen=(m.bx*m.bx+m.by*m.by+m.bz*m.bz)
sqzlen=(m.cx*m.cx+m.cy*m.cy+m.cz*m.cz)
if abs(sqxlen-sqylen)<=tol and abs(sqxlen-sqzlen)<=tol:
return true
return false
proc mirror*(planeperp:TVector3d):TMatrix3d {.noInit.}=
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
## and passes through origo. `planeperp` does not need to be normalized.
# https://en.wikipedia.org/wiki/Transformation_matrix
var n=planeperp
if not n.tryNormalize:
raise newException(EDivByZero,"Cannot mirror over a plane with a zero length normal")
let
a=n.x
b=n.y
c=n.z
ab=a*b
ac=a*c
bc=b*c
result.setElements(
1-2*a*a , -2*ab,-2*ac,0,
-2*ab , 1-2*b*b, -2*bc, 0,
-2*ac, -2*bc, 1-2*c*c,0,
0,0,0,1)
proc mirror*(planeperp:TVector3d,org:TPoint3d):TMatrix3d {.noInit.}=
## Creates a matrix that mirrors over the plane that has `planeperp` as normal,
## and passes through `org`. `planeperp` does not need to be normalized.
# constructs a mirror M like the simpler mirror matrix constructor
# above but premultiplies with the inverse traslation of org
# and postmultiplies with the translation of org.
# With some fiddling this becomes reasonably simple:
var n=planeperp
if not n.tryNormalize:
raise newException(EDivByZero,"Cannot mirror over a plane with a zero length normal")
let
a=n.x
b=n.y
c=n.z
ab=a*b
ac=a*c
bc=b*c
aa=a*a
bb=b*b
cc=c*c
tx=org.x
ty=org.y
tz=org.z
result.setElements(
1-2*aa , -2*ab,-2*ac,0,
-2*ab , 1-2*bb, -2*bc, 0,
-2*ac, -2*bc, 1-2*cc,0,
2*(ac*tz+ab*ty+aa*tx),
2*(bc*tz+bb*ty+ab*tx),
2*(cc*tz+bc*ty+ac*tx) ,1)
proc determinant*(m:TMatrix3d):float=
## Computes the determinant of matrix `m`.
# This computation is gotten from ratsimp(optimize(determinant(m))) in maxima CAS
let
O1=m.cx*m.tw-m.cw*m.tx
O2=m.cy*m.tw-m.cw*m.ty
O3=m.cx*m.ty-m.cy*m.tx
O4=m.cz*m.tw-m.cw*m.tz
O5=m.cx*m.tz-m.cz*m.tx
O6=m.cy*m.tz-m.cz*m.ty
return (O1*m.ay-O2*m.ax-O3*m.aw)*m.bz+
(-O1*m.az+O4*m.ax+O5*m.aw)*m.by+
(O2*m.az-O4*m.ay-O6*m.aw)*m.bx+
(O3*m.az-O5*m.ay+O6*m.ax)*m.bw
proc inverse*(m:TMatrix3d):TMatrix3d {.noInit.}=
## Computes the inverse of matrix `m`. If the matrix
## determinant is zero, thus not invertible, a EDivByZero
## will be raised.
# this computation comes from optimize(invert(m)) in maxima CAS
let
det=m.determinant
O2=m.cy*m.tw-m.cw*m.ty
O3=m.cz*m.tw-m.cw*m.tz
O4=m.cy*m.tz-m.cz*m.ty
O5=m.by*m.tw-m.bw*m.ty
O6=m.bz*m.tw-m.bw*m.tz
O7=m.by*m.tz-m.bz*m.ty
O8=m.by*m.cw-m.bw*m.cy
O9=m.bz*m.cw-m.bw*m.cz
O10=m.by*m.cz-m.bz*m.cy
O11=m.cx*m.tw-m.cw*m.tx
O12=m.cx*m.tz-m.cz*m.tx
O13=m.bx*m.tw-m.bw*m.tx
O14=m.bx*m.tz-m.bz*m.tx
O15=m.bx*m.cw-m.bw*m.cx
O16=m.bx*m.cz-m.bz*m.cx
O17=m.cx*m.ty-m.cy*m.tx
O18=m.bx*m.ty-m.by*m.tx
O19=m.bx*m.cy-m.by*m.cx
if det==0.0:
raise newException(EDivByZero,"Cannot normalize zero length vector")
result.setElements(
(m.bw*O4+m.by*O3-m.bz*O2)/det , (-m.aw*O4-m.ay*O3+m.az*O2)/det,
(m.aw*O7+m.ay*O6-m.az*O5)/det , (-m.aw*O10-m.ay*O9+m.az*O8)/det,
(-m.bw*O12-m.bx*O3+m.bz*O11)/det , (m.aw*O12+m.ax*O3-m.az*O11)/det,
(-m.aw*O14-m.ax*O6+m.az*O13)/det , (m.aw*O16+m.ax*O9-m.az*O15)/det,
(m.bw*O17+m.bx*O2-m.by*O11)/det , (-m.aw*O17-m.ax*O2+m.ay*O11)/det,
(m.aw*O18+m.ax*O5-m.ay*O13)/det , (-m.aw*O19-m.ax*O8+m.ay*O15)/det,
(-m.bx*O4+m.by*O12-m.bz*O17)/det , (m.ax*O4-m.ay*O12+m.az*O17)/det,
(-m.ax*O7+m.ay*O14-m.az*O18)/det , (m.ax*O10-m.ay*O16+m.az*O19)/det)
proc equals*(m1:TMatrix3d,m2:TMatrix3d,tol=1.0e-6):bool=
## Checks if all elements of `m1`and `m2` is equal within
## a given tolerance `tol`.
return
abs(m1.ax-m2.ax)<=tol and
abs(m1.ay-m2.ay)<=tol and
abs(m1.az-m2.az)<=tol and
abs(m1.aw-m2.aw)<=tol and
abs(m1.bx-m2.bx)<=tol and
abs(m1.by-m2.by)<=tol and
abs(m1.bz-m2.bz)<=tol and
abs(m1.bw-m2.bw)<=tol and
abs(m1.cx-m2.cx)<=tol and
abs(m1.cy-m2.cy)<=tol and
abs(m1.cz-m2.cz)<=tol and
abs(m1.cw-m2.cw)<=tol and
abs(m1.tx-m2.tx)<=tol and
abs(m1.ty-m2.ty)<=tol and
abs(m1.tz-m2.tz)<=tol and
abs(m1.tw-m2.tw)<=tol
proc `=~`*(m1,m2:TMatrix3d):bool=
## Checks if `m1`and `m2` is aproximately equal, using a
## tolerance of 1e-6.
equals(m1,m2)
proc transpose*(m:TMatrix3d):TMatrix3d {.noInit.}=
## Returns the transpose of `m`
result.setElements(m.ax,m.bx,m.cx,m.tx,m.ay,m.by,m.cy,m.ty,m.az,m.bz,m.cz,m.tz,m.aw,m.bw,m.cw,m.tw)
proc getXAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local x axis of `m`
result.x=m.ax
result.y=m.ay
result.z=m.az
proc getYAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local y axis of `m`
result.x=m.bx
result.y=m.by
result.z=m.bz
proc getZAxis*(m:TMatrix3d):TVector3d {.noInit.}=
## Gets the local y axis of `m`
result.x=m.cx
result.y=m.cy
result.z=m.cz
proc `$`*(m:TMatrix3d):string=
## String representation of `m`
return rtos(m.ax) & "," & rtos(m.ay) & "," &rtos(m.az) & "," & rtos(m.aw) &
"\n" & rtos(m.bx) & "," & rtos(m.by) & "," &rtos(m.bz) & "," & rtos(m.bw) &
"\n" & rtos(m.cx) & "," & rtos(m.cy) & "," &rtos(m.cz) & "," & rtos(m.cw) &
"\n" & rtos(m.tx) & "," & rtos(m.ty) & "," &rtos(m.tz) & "," & rtos(m.tw)
proc apply*(m:TMatrix3d, x,y,z:var float, translate=false)=
## Applies transformation `m` onto `x`,`y`,`z`, optionally
## using the translation part of the matrix.
let
oldx=x
oldy=y
oldz=z
x=m.cx*oldz+m.bx*oldy+m.ax*oldx
y=m.cy*oldz+m.by*oldy+m.ay*oldx
z=m.cz*oldz+m.bz*oldy+m.az*oldx
if translate:
x+=m.tx
y+=m.ty
z+=m.tz
# ***************************************
# TVector3d implementation
# ***************************************
proc Vector3d*(x,y,z:float):TVector3d=
result.x=x
result.y=y
result.z=z
proc len*(v:TVector3d):float=
## Returns the length of the vector `v`.
sqrt(v.x*v.x+v.y*v.y+v.z*v.z)
proc `len=`*(v:var TVector3d,newlen:float) {.noInit.} =
## Sets the length of the vector, keeping its direction.
## If the vector has zero length before chenging it's length,
## an arbitrary vector of the requested length is returned.
let fac=newlen/v.len
if newlen==0.0:
v.x=0.0
v.y=0.0
v.z=0.0
return
if fac==inf or fac==neginf:
#to short for float accuracy
#do as good as possible:
v.x=newlen
v.y=0.0
v.z=0.0
else:
v.x*=fac
v.y*=fac
v.z*=fac
proc sqrLen*(v:TVector3d):float {.inline.}=
## Computes the squared length of the vector, which is
## faster than computing the absolute length.
return v.x*v.x+v.y*v.y+v.z*v.z
proc `$` *(v:TVector3d):string=
## String representation of `v`
result=rtos(v.x)
result.add(",")
result.add(rtos(v.y))
result.add(",")
result.add(rtos(v.z))
proc `&` *(v:TVector3d,m:TMatrix3d):TVector3d {.noInit.} =
## Concatenate vector `v` with a transformation matrix.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY AZ AW |
# | X Y Z 1 | * | BX BY BZ BW |
# | CX CY CZ CW |
# | 0 0 0 1 |
let
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
result.z=m.cz*v.z+m.bz*v.y+m.az*v.x
result.y=newy
result.x=newx
proc `&=` *(v:var TVector3d,m:TMatrix3d) {.noInit.} =
## Applies transformation `m` onto `v` in place.
## Transforming a vector ignores the translational part
## of the matrix.
# | AX AY AZ AW |
# | X Y Z 1 | * | BX BY BZ BW |
# | CX CY CZ CW |
# | 0 0 0 1 |
let
newx=m.cx*v.z+m.bx*v.y+m.ax*v.x
newy=m.cy*v.z+m.by*v.y+m.ay*v.x
v.z=m.cz*v.z+m.bz*v.y+m.az*v.x
v.y=newy
v.x=newx
proc transformNorm*(v:var TVector3d,m:TMatrix3d)=
## Applies a normal direction transformation `m` onto `v` in place.
## The resulting vector is *not* normalized. Transforming a vector ignores the
## translational part of the matrix. If the matrix is not invertible
## (determinant=0), an EDivByZero will be raised.
# transforming a normal is done by transforming
# by the transpose of the inverse of the original matrix
# Major reason this simple function is here is that this function can be optimized in the future,
# (possibly by hardware) as well as having a consistent API with the 2d version.
v&=transpose(inverse(m))
proc transformInv*(v:var TVector3d,m:TMatrix3d)=
## Applies the inverse of `m` on vector `v`. Transforming a vector ignores
## the translational part of the matrix. Transforming a vector ignores the
## translational part of the matrix.
## If the matrix is not invertible (determinant=0), an EDivByZero
## will be raised.
# Major reason this simple function is here is that this function can be optimized in the future,
# (possibly by hardware) as well as having a consistent API with the 2d version.
v&=m.inverse
proc transformNormInv*(vec:var TVector3d,m:TMatrix3d)=
## Applies an inverse normal direction transformation `m` onto `v` in place.
## This is faster than creating an inverse
## matrix and transformNorm(...) it. Transforming a vector ignores the
## translational part of the matrix.
# see vector2d:s equivalent for a deeper look how/why this works
vec&=m.transpose
proc tryNormalize*(v:var TVector3d):bool=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length (and thus no angle), it is left unmodified and false is
## returned, otherwise true is returned.
let mag=v.len
if mag==0.0:
return false
v.x/=mag
v.y/=mag
v.z/=mag
return true
proc normalize*(v:var TVector3d) {.inline.}=
## Modifies `v` to have a length of 1.0, keeping its angle.
## If `v` has zero length, an EDivByZero will be raised.
if not tryNormalize(v):
raise newException(EDivByZero,"Cannot normalize zero length vector")
proc rotate*(vec:var TVector3d,angle:float,axis:TVector3d)=
## Rotates `vec` in place, with `angle` radians over `axis`, which passes
## through origo.
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
if not normax.tryNormalize:
raise newException(EDivByZero,"Cannot rotate around zero length axis")
let
cs=cos(angle)
si=sin(angle)
omc=1.0-cs
u=normax.x
v=normax.y
w=normax.z
x=vec.x
y=vec.y
z=vec.z
uxyzomc=(u*x+v*y+w*z)*omc
vec.x=u*uxyzomc+x*cs+(v*z-w*y)*si
vec.y=v*uxyzomc+y*cs+(w*x-u*z)*si
vec.z=w*uxyzomc+z*cs+(u*y-v*x)*si
proc scale*(v:var TVector3d,s:float)=
## Scales the vector in place with factor `s`
v.x*=s
v.y*=s
v.z*=s
proc stretch*(v:var TVector3d,sx,sy,sz:float)=
## Scales the vector non uniformly with factors `sx`,`sy`,`sz`
v.x*=sx
v.y*=sy
v.z*=sz
proc mirror*(v:var TVector3d,planeperp:TVector3d)=
## Computes the mirrored vector of `v` over the plane
## that has `planeperp` as normal direction. This is the
## same as reflecting the vector `v` on the plane.
## `planeperp` does not need to be normalized.
var n=planeperp
n.normalize
let
x=v.x
y=v.y
z=v.z
a=n.x
b=n.y
c=n.z
ac=a*c
ab=a*b
bc=b*c
v.x= -2*(ac*z+ab*y+a*a*x)+x
v.y= -2*(bc*z+b*b*y+ab*x)+y
v.z= -2*(c*c*z+bc*y+ac*x)+z
proc `-` *(v:TVector3d):TVector3d=
## Negates a vector
result.x= -v.x
result.y= -v.y
result.z= -v.z
# declare templated binary operators
makeBinOpVector(`+`)
makeBinOpVector(`-`)
makeBinOpVector(`*`)
makeBinOpVector(`/`)
makeBinOpAssignVector(`+=`)
makeBinOpAssignVector(`-=`)
makeBinOpAssignVector(`*=`)
makeBinOpAssignVector(`/=`)
proc dot*(v1,v2:TVector3d):float {.inline.}=
## Computes the dot product of two vectors.
## Returns 0.0 if the vectors are perpendicular.
return v1.x*v2.x+v1.y*v2.y+v1.z*v2.z
proc cross*(v1,v2:TVector3d):TVector3d {.inline.}=
## Computes the cross product of two vectors.
## The result is a vector which is perpendicular
## to the plane of `v1` and `v2`, which means
## cross(xaxis,yaxis)=zaxis
result.x = (v1.y * v2.z) - (v2.y * v1.z)
result.y = (v1.z * v2.x) - (v2.z * v1.x)
result.z = (v1.x * v2.y) - (v2.x * v1.y)
proc equals*(v1,v2:TVector3d,tol=1.0e-6):bool=
## Checks if two vectors approximately equals with a tolerance.
return abs(v2.x-v1.x)<=tol and abs(v2.y-v1.y)<=tol and abs(v2.z-v1.z)<=tol
proc `=~` *(v1,v2:TVector3d):bool=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(v1,v2)
proc angleTo*(v1,v2:TVector3d):float=
## Returns the smallest angle between v1 and v2,
## which is in range 0-PI
var
nv1=v1
nv2=v2
if not nv1.tryNormalize or not nv2.tryNormalize:
return 0.0 # zero length vector has zero angle to any other vector
return safeArccos(dot(nv1,nv2))
proc arbitraryAxis*(norm:TVector3d):TMatrix3d {.noInit.}=
## Computes the rotation matrix that would transform
## world z vector into `norm`. The inverse of this matrix
## is useful to tranform a planar 3d object to 2d space.
## This is the same algorithm used to interpret DXF and DWG files.
const lim=1.0/64.0
var ax,ay,az:TVector3d
if abs(norm.x)<lim and abs(norm.y)<lim:
ax=cross(YAXIS,norm)
else:
ax=cross(ZAXIS,norm)
ax.normalize()
ay=cross(norm,ax)
ay.normalize()
az=cross(ax,ay)
result.setElements(
ax.x,ax.y,ax.z,0.0,
ay.x,ay.y,ay.z,0.0,
az.x,az.y,az.z,0.0,
0.0,0.0,0.0,1.0)
proc bisect*(v1,v2:TVector3d):TVector3d {.noInit.}=
## Computes the bisector between v1 and v2 as a normalized vector
## If one of the input vectors has zero length, a normalized verison
## of the other is returned. If both input vectors has zero length,
## an arbitrary normalized vector is returned.
var
vmag1=v1.len
vmag2=v2.len
# zero length vector equals arbitrary vector, just change to magnitude to one to
# avoid zero division
if vmag1==0.0:
if vmag2==0: #both are zero length return any normalized vector
return XAXIS
vmag1=1.0
if vmag2==0.0: vmag2=1.0
let
x1=v1.x/vmag1
y1=v1.y/vmag1
z1=v1.z/vmag1
x2=v2.x/vmag2
y2=v2.y/vmag2
z2=v2.z/vmag2
result.x=(x1 + x2) * 0.5
result.y=(y1 + y2) * 0.5
result.z=(z1 + z2) * 0.5
if not result.tryNormalize():
# This can happen if vectors are colinear. In this special case
# there are actually inifinitely many bisectors, we select just
# one of them.
result=v1.cross(XAXIS)
if result.sqrlen<1.0e-9:
result=v1.cross(YAXIS)
if result.sqrlen<1.0e-9:
result=v1.cross(ZAXIS) # now we should be guaranteed to have succeeded
result.normalize
# ***************************************
# TPoint3d implementation
# ***************************************
proc Point3d*(x,y,z:float):TPoint3d=
result.x=x
result.y=y
result.z=z
proc sqrDist*(a,b:TPoint3d):float=
## Computes the squared distance between `a`and `b`
let dx=b.x-a.x
let dy=b.y-a.y
let dz=b.z-a.z
result=dx*dx+dy*dy+dz*dz
proc dist*(a,b:TPoint3d):float {.inline.}=
## Computes the absolute distance between `a`and `b`
result=sqrt(sqrDist(a,b))
proc `$` *(p:TPoint3d):string=
## String representation of `p`
result=rtos(p.x)
result.add(",")
result.add(rtos(p.y))
result.add(",")
result.add(rtos(p.z))
proc `&`*(p:TPoint3d,m:TMatrix3d):TPoint3d=
## Concatenates a point `p` with a transform `m`,
## resulting in a new, transformed point.
result.z=m.cz*p.z+m.bz*p.y+m.az*p.x+m.tz
result.y=m.cy*p.z+m.by*p.y+m.ay*p.x+m.ty
result.x=m.cx*p.z+m.bx*p.y+m.ax*p.x+m.tx
proc `&=` *(p:var TPoint3d,m:TMatrix3d)=
## Applies transformation `m` onto `p` in place.
let
x=p.x
y=p.y
z=p.z
p.x=m.cx*z+m.bx*y+m.ax*x+m.tx
p.y=m.cy*z+m.by*y+m.ay*x+m.ty
p.z=m.cz*z+m.bz*y+m.az*x+m.tz
proc transformInv*(p:var TPoint3d,m:TMatrix3d)=
## Applies the inverse of transformation `m` onto `p` in place.
## If the matrix is not invertable (determinant=0) , EDivByZero will
## be raised.
# can possibly be more optimized in the future so use this function when possible
p&=inverse(m)
proc `+`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
## Adds a vector `v` to a point `p`, resulting
## in a new point.
result.x=p.x+v.x
result.y=p.y+v.y
result.z=p.z+v.z
proc `+=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
## Adds a vector `v` to a point `p` in place.
p.x+=v.x
p.y+=v.y
p.z+=v.z
proc `-`*(p:TPoint3d,v:TVector3d):TPoint3d {.noInit,inline.} =
## Subtracts a vector `v` from a point `p`, resulting
## in a new point.
result.x=p.x-v.x
result.y=p.y-v.y
result.z=p.z-v.z
proc `-`*(p1,p2:TPoint3d):TVector3d {.noInit,inline.} =
## Subtracts `p2`from `p1` resulting in a difference vector.
result.x=p1.x-p2.x
result.y=p1.y-p2.y
result.z=p1.z-p2.z
proc `-=`*(p:var TPoint3d,v:TVector3d) {.noInit,inline.} =
## Subtracts a vector `v` from a point `p` in place.
p.x-=v.x
p.y-=v.y
p.z-=v.z
proc equals(p1,p2:TPoint3d,tol=1.0e-6):bool {.inline.}=
## Checks if two points approximately equals with a tolerance.
return abs(p2.x-p1.x)<=tol and abs(p2.y-p1.y)<=tol and abs(p2.z-p1.z)<=tol
proc `=~`*(p1,p2:TPoint3d):bool {.inline.}=
## Checks if two vectors approximately equals with a
## hardcoded tolerance 1e-6
equals(p1,p2)
proc rotate*(p:var TPoint3d,rad:float,axis:TVector3d)=
## Rotates point `p` in place `rad` radians about an axis
## passing through origo.
var v=vector3d(p.x,p.y,p.z)
v.rotate(rad,axis) # reuse this code here since doing the same thing and quite complicated
p.x=v.x
p.y=v.y
p.z=v.z
proc rotate*(p:var TPoint3d,angle:float,axis:TVector3d,org:TPoint3d)=
## Rotates point `p` in place `rad` radians about an axis
## passing through `org`
# see PDF document http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.pdf
# for how this is computed
var normax=axis
normax.normalize
let
cs=cos(angle)
omc=1.0-cs
si=sin(angle)
u=normax.x
v=normax.y
w=normax.z
a=org.x
b=org.y
c=org.z
x=p.x
y=p.y
z=p.z
uu=u*u
vv=v*v
ww=w*w
ux=u*p.x
vy=v*p.y
wz=w*p.z
au=a*u
bv=b*v
cw=c*w
uxmvymwz=ux-vy-wz
p.x=(a*(vv+ww)-u*(bv+cw-uxmvymwz))*omc + x*cs + (b*w+v*z-c*v-w*y)*si
p.y=(b*(uu+ww)-v*(au+cw-uxmvymwz))*omc + y*cs + (c*u-a*w+w*x-u*z)*si
p.z=(c*(uu+vv)-w*(au+bv-uxmvymwz))*omc + z*cs + (a*v+u*y-b*u-v*x)*si
proc scale*(p:var TPoint3d,fac:float) {.inline.}=
## Scales a point in place `fac` times with world origo as origin.
p.x*=fac
p.y*=fac
p.z*=fac
proc scale*(p:var TPoint3d,fac:float,org:TPoint3d){.inline.}=
## Scales the point in place `fac` times with `org` as origin.
p.x=(p.x - org.x) * fac + org.x
p.y=(p.x - org.y) * fac + org.y
p.z=(p.z - org.z) * fac + org.z
proc stretch*(p:var TPoint3d,facx,facy,facz:float){.inline.}=
## Scales a point in place non uniformly `facx` and `facy` times with world origo as origin.
p.x*=facx
p.y*=facy
p.z*=facz
proc stretch*(p:var TPoint3d,facx,facy,facz:float,org:TPoint3d){.inline.}=