-
Notifications
You must be signed in to change notification settings - Fork 605
/
transforms.py
466 lines (360 loc) · 17.8 KB
/
transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import random
import numpy as np
import math
import cv2 as cv
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as tvisf
class Transform:
"""A set of transformations, used for e.g. data augmentation.
Args of constructor:
transforms: An arbitrary number of transformations, derived from the TransformBase class.
They are applied in the order they are given.
The Transform object can jointly transform images, bounding boxes and segmentation masks.
This is done by calling the object with the following key-word arguments (all are optional).
The following arguments are inputs to be transformed. They are either supplied as a single instance, or a list of instances.
image - Image
coords - 2xN dimensional Tensor of 2D image coordinates [y, x]
bbox - Bounding box on the form [x, y, w, h]
mask - Segmentation mask with discrete classes
The following parameters can be supplied with calling the transform object:
joint [Bool] - If True then transform all images/coords/bbox/mask in the list jointly using the same transformation.
Otherwise each tuple (images, coords, bbox, mask) will be transformed independently using
different random rolls. Default: True.
new_roll [Bool] - If False, then no new random roll is performed, and the saved result from the previous roll
is used instead. Default: True.
Check the DiMPProcessing class for examples.
"""
def __init__(self, *transforms):
if len(transforms) == 1 and isinstance(transforms[0], (list, tuple)):
transforms = transforms[0]
self.transforms = transforms
self._valid_inputs = ['image', 'coords', 'bbox', 'mask', 'bboxes']
self._valid_args = ['joint', 'new_roll']
self._valid_all = self._valid_inputs + self._valid_args
def __call__(self, **inputs):
var_names = [k for k in inputs.keys() if k in self._valid_inputs]
for v in inputs.keys():
if v not in self._valid_all:
raise ValueError(
'Incorrect input \"{}\" to transform. Only supports inputs {} and arguments {}.'.format(v,
self._valid_inputs,
self._valid_args))
joint_mode = inputs.get('joint', True)
new_roll = inputs.get('new_roll', True)
if not joint_mode:
out = zip(*[self(**inp) for inp in self._split_inputs(inputs)])
return tuple(list(o) for o in out)
out = {k: v for k, v in inputs.items() if k in self._valid_inputs}
for t in self.transforms:
out = t(**out, joint=joint_mode, new_roll=new_roll)
if len(var_names) == 1:
return out[var_names[0]]
# Make sure order is correct
return tuple(out[v] for v in var_names)
def _split_inputs(self, inputs):
var_names = [k for k in inputs.keys() if k in self._valid_inputs]
split_inputs = [{k: v for k, v in zip(var_names, vals)} for vals in zip(*[inputs[vn] for vn in var_names])]
for arg_name, arg_val in filter(lambda it: it[0] != 'joint' and it[0] in self._valid_args, inputs.items()):
if isinstance(arg_val, list):
for inp, av in zip(split_inputs, arg_val):
inp[arg_name] = av
else:
for inp in split_inputs:
inp[arg_name] = arg_val
return split_inputs
def __repr__(self):
format_string = self.__class__.__name__ + '('
for t in self.transforms:
format_string += '\n'
format_string += ' {0}'.format(t)
format_string += '\n)'
return format_string
class TransformBase:
"""Base class for transformation objects. See the Transform class for details."""
def __init__(self):
self._valid_inputs = ['image', 'coords', 'bbox', 'mask', 'bboxes']
self._valid_args = ['new_roll']
self._valid_all = self._valid_inputs + self._valid_args
self._rand_params = None
def __call__(self, **inputs):
# Split input
input_vars = {k: v for k, v in inputs.items() if k in self._valid_inputs}
input_args = {k: v for k, v in inputs.items() if k in self._valid_args}
# Roll random parameters for the transform
if input_args.get('new_roll', True):
rand_params = self.roll()
if rand_params is None:
rand_params = ()
elif not isinstance(rand_params, tuple):
rand_params = (rand_params,)
self._rand_params = rand_params
outputs = dict()
for var_name, var in input_vars.items():
if var is not None:
transform_func = getattr(self, 'transform_' + var_name)
if var_name in ['coords', 'bbox', 'bboxes']:
params = (self._get_image_size(input_vars),) + self._rand_params
else:
params = self._rand_params
if isinstance(var, (list, tuple)):
outputs[var_name] = [transform_func(x, *params) for x in var]
else:
outputs[var_name] = transform_func(var, *params)
return outputs
def _get_image_size(self, inputs):
im = None
for var_name in ['image', 'mask']:
if inputs.get(var_name) is not None:
im = inputs[var_name]
break
if im is None:
return None
if isinstance(im, (list, tuple)):
im = im[0]
if isinstance(im, np.ndarray):
return im.shape[:2]
if torch.is_tensor(im):
return (im.shape[-2], im.shape[-1])
raise Exception('Unknown image type')
def roll(self):
return None
def transform_image(self, image, *rand_params):
"""Must be deterministic"""
return image
def transform_coords(self, coords, image_shape, *rand_params):
"""Must be deterministic"""
return coords
def transform_bboxes(self, bboxes, image_shape, *rand_params):
return {i: self.transform_bbox(bbox, image_shape, *rand_params) for i, bbox in bboxes.items()}
def transform_bbox(self, bbox, image_shape, *rand_params):
"""Assumes [x, y, w, h]"""
# Check if not overloaded
if self.transform_coords.__code__ == TransformBase.transform_coords.__code__:
return bbox
coord = bbox.clone().view(-1, 2).t().flip(0)
x1 = coord[1, 0]
x2 = coord[1, 0] + coord[1, 1]
y1 = coord[0, 0]
y2 = coord[0, 0] + coord[0, 1]
coord_all = torch.tensor([[y1, y1, y2, y2], [x1, x2, x2, x1]])
coord_transf = self.transform_coords(coord_all, image_shape, *rand_params).flip(0)
tl = torch.min(coord_transf, dim=1)[0]
sz = torch.max(coord_transf, dim=1)[0] - tl
bbox_out = torch.cat((tl, sz), dim=-1).reshape(bbox.shape)
return bbox_out
def transform_mask(self, mask, *rand_params):
"""Must be deterministic"""
return mask
class ToTensor(TransformBase):
"""Convert to a Tensor"""
def transform_image(self, image):
# handle numpy array
if image.ndim == 2:
image = image[:, :, None]
image = torch.from_numpy(image.transpose((2, 0, 1)))
# backward compatibility
if isinstance(image, torch.ByteTensor):
return image.float().div(255)
else:
return image
def transfrom_mask(self, mask):
if isinstance(mask, np.ndarray):
return torch.from_numpy(mask)
class ToTensorAndJitter(TransformBase):
"""Convert to a Tensor and jitter brightness"""
def __init__(self, brightness_jitter=0.0, normalize=True):
super().__init__()
self.brightness_jitter = brightness_jitter
self.normalize = normalize
def roll(self):
return np.random.uniform(max(0, 1 - self.brightness_jitter), 1 + self.brightness_jitter)
def transform_image(self, image, brightness_factor):
# handle numpy array
image = torch.from_numpy(image.transpose((2, 0, 1)))
# backward compatibility
if self.normalize:
return image.float().mul(brightness_factor / 255.0).clamp(0.0, 1.0)
else:
return image.float().mul(brightness_factor).clamp(0.0, 255.0)
def transform_mask(self, mask, brightness_factor):
if isinstance(mask, np.ndarray):
return torch.from_numpy(mask)
else:
return mask
class Normalize(TransformBase):
"""Normalize image"""
def __init__(self, mean, std, inplace=False):
super().__init__()
self.mean = mean
self.std = std
self.inplace = inplace
def transform_image(self, image):
return tvisf.normalize(image, self.mean, self.std, self.inplace)
class ToGrayscale(TransformBase):
"""Converts image to grayscale with probability"""
def __init__(self, probability=0.5):
super().__init__()
self.probability = probability
self.color_weights = np.array([0.2989, 0.5870, 0.1140], dtype=np.float32)
def roll(self):
return random.random() < self.probability
def transform_image(self, image, do_grayscale):
if do_grayscale:
if torch.is_tensor(image):
raise NotImplementedError('Implement torch variant.')
img_gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
return np.stack([img_gray, img_gray, img_gray], axis=2)
# return np.repeat(np.sum(img * self.color_weights, axis=2, keepdims=True).astype(np.uint8), 3, axis=2)
return image
class ToBGR(TransformBase):
"""Converts image to BGR"""
def transform_image(self, image):
if torch.is_tensor(image):
raise NotImplementedError('Implement torch variant.')
img_bgr = cv.cvtColor(image, cv.COLOR_RGB2BGR)
return img_bgr
class RandomHorizontalFlip(TransformBase):
"""Horizontally flip image randomly with a probability p."""
def __init__(self, probability=0.5):
super().__init__()
self.probability = probability
def roll(self):
return random.random() < self.probability
def transform_image(self, image, do_flip):
if do_flip:
if torch.is_tensor(image):
return image.flip((2,))
return np.fliplr(image).copy()
return image
def transform_coords(self, coords, image_shape, do_flip):
if do_flip:
coords = coords.clone()
coords[1, :] = (image_shape[1] - 1) - coords[1, :]
return coords
def transform_mask(self, mask, do_flip):
if do_flip:
if torch.is_tensor(mask):
return mask.flip((-1,))
return np.fliplr(mask).copy()
return mask
class Blur(TransformBase):
""" Blur the image by applying a gaussian kernel with given sigma"""
def __init__(self, sigma):
super().__init__()
if isinstance(sigma, (float, int)):
sigma = (sigma, sigma)
self.sigma = sigma
self.filter_size = [math.ceil(2 * s) for s in self.sigma]
x_coord = [torch.arange(-sz, sz + 1, dtype=torch.float32) for sz in self.filter_size]
self.filter = [torch.exp(-(x ** 2) / (2 * s ** 2)) for x, s in zip(x_coord, self.sigma)]
self.filter[0] = self.filter[0].view(1, 1, -1, 1) / self.filter[0].sum()
self.filter[1] = self.filter[1].view(1, 1, 1, -1) / self.filter[1].sum()
def transform_image(self, image):
if torch.is_tensor(image):
sz = image.shape[2:]
im1 = F.conv2d(image.view(-1, 1, sz[0], sz[1]), self.filter[0], padding=(self.filter_size[0], 0))
return F.conv2d(im1, self.filter[1], padding=(0, self.filter_size[1])).view(-1, sz[0], sz[1])
else:
raise NotImplementedError
class RandomBlur(TransformBase):
""" Blur the image, with a given probability, by applying a gaussian kernel with given sigma"""
def __init__(self, sigma, probability=0.1):
super().__init__()
self.probability = probability
if isinstance(sigma, (float, int)):
sigma = (sigma, sigma)
self.sigma = sigma
self.filter_size = [math.ceil(2 * s) for s in self.sigma]
x_coord = [torch.arange(-sz, sz + 1, dtype=torch.float32) for sz in self.filter_size]
self.filter = [torch.exp(-(x ** 2) / (2 * s ** 2)) for x, s in zip(x_coord, self.sigma)]
self.filter[0] = self.filter[0].view(1, 1, -1, 1) / self.filter[0].sum()
self.filter[1] = self.filter[1].view(1, 1, 1, -1) / self.filter[1].sum()
def roll(self):
return random.random() < self.probability
def transform(self, image, do_blur=None):
if do_blur is None:
do_blur = False
if do_blur:
if torch.is_tensor(image):
sz = image.shape[1:]
im1 = F.conv2d(image.view(-1, 1, sz[0], sz[1]), self.filter[0], padding=(self.filter_size[0], 0))
return F.conv2d(im1, self.filter[1], padding=(0, self.filter_size[1])).view(-1, sz[0], sz[1])
else:
raise NotImplementedError
else:
return image
class RandomAffine(TransformBase):
"""Apply random affine transformation."""
def __init__(self, p_flip=0.0, max_rotation=0.0, max_shear=0.0, max_scale=0.0, max_ar_factor=0.0,
border_mode='constant', pad_amount=0, scale_center=0.0):
super().__init__()
self.p_flip = p_flip
self.max_rotation = max_rotation
self.max_shear = max_shear
self.max_scale = max_scale
self.max_ar_factor = max_ar_factor
self.scale_center = scale_center
if border_mode == 'constant':
self.border_flag = cv.BORDER_CONSTANT
elif border_mode == 'replicate':
self.border_flag == cv.BORDER_REPLICATE
else:
raise Exception
self.pad_amount = pad_amount
def roll(self):
do_flip = random.random() < self.p_flip
theta = random.uniform(-self.max_rotation, self.max_rotation)
shear_x = random.uniform(-self.max_shear, self.max_shear)
shear_y = random.uniform(-self.max_shear, self.max_shear)
ar_factor = np.exp(random.uniform(-self.max_ar_factor, self.max_ar_factor))
scale_factor = np.exp(random.uniform(-self.max_scale, self.max_scale))
scale_center = random.uniform(-self.scale_center, self.scale_center)
return do_flip, theta, (shear_x, shear_y), (scale_factor, scale_factor * ar_factor), scale_center
def _construct_t_mat(self, image_shape, do_flip, theta, shear_values, scale_factors, scale_center):
im_h, im_w = image_shape
t_mat = np.identity(3)
if do_flip:
if do_flip:
t_mat[0, 0] = -1.0
t_mat[0, 2] = im_w
t_rot = cv.getRotationMatrix2D((im_w * 0.5, im_h * 0.5), theta, 1.0)
t_rot = np.concatenate((t_rot, np.array([0.0, 0.0, 1.0]).reshape(1, 3)))
t_shear = np.array([[1.0, shear_values[0], -shear_values[0] * 0.5 * im_w],
[shear_values[1], 1.0, -shear_values[1] * 0.5 * im_h],
[0.0, 0.0, 1.0]])
t_scale = np.array([[scale_factors[0], 0.0, (1.0 - scale_factors[0]) * 0.5 * im_w],
[0.0, scale_factors[1], (1.0 - scale_factors[1]) * 0.5 * im_h],
[0.0, 0.0, 1.0]])
t_trans = np.array([[1.0, 0.0, -0.2 * im_w * scale_center],
[0.0, 1.0, -0.2 * im_w * scale_center],
[0.0, 0.0, 1.0]])
t_mat = t_scale @ t_rot @ t_shear @ t_mat @ t_trans
t_mat[0, 2] += self.pad_amount
t_mat[1, 2] += self.pad_amount
t_mat = t_mat[:2, :]
return t_mat
def transform_image(self, image, do_flip, theta, shear_values, scale_factors, scale_center):
if torch.is_tensor(image):
raise Exception('Only supported for numpy input')
t_mat = self._construct_t_mat(image.shape[:2], do_flip, theta, shear_values, scale_factors, scale_center)
output_sz = (image.shape[1] + 2 * self.pad_amount, image.shape[0] + 2 * self.pad_amount)
image_t = cv.warpAffine(image, t_mat, output_sz, flags=cv.INTER_LINEAR,
borderMode=self.border_flag)
return image_t
def transform_coords(self, coords, image_shape, do_flip, theta, shear_values, scale_factors, scale_center):
t_mat = self._construct_t_mat(image_shape, do_flip, theta, shear_values, scale_factors, scale_center)
t_mat_tensor = torch.from_numpy(t_mat).float()
coords_xy1 = torch.stack((coords[1, :], coords[0, :], torch.ones_like(coords[1, :]))).float()
coords_xy_t = torch.mm(t_mat_tensor, coords_xy1)
# coords_xy_t_cropped = torch.clamp(coords_xy_t, min=torch.zeros(2, 1),
# max=torch.tensor([[image_shape[1]], [image_shape[0]]]))
coords_xy_t_cropped = torch.stack([torch.clamp(coords_xy_t[0], min=0, max=image_shape[1]),
torch.clamp(coords_xy_t[1], min=0, max=image_shape[0])], dim=0)
return coords_xy_t_cropped[[1, 0], :]
def transform_mask(self, mask, do_flip, theta, shear_values, scale_factors, scale_center):
t_mat = self._construct_t_mat(mask.shape[:2], do_flip, theta, shear_values, scale_factors, scale_center)
output_sz = (mask.shape[1] + 2 * self.pad_amount, mask.shape[0] + 2 * self.pad_amount)
mask_t = cv.warpAffine(mask.numpy(), t_mat, output_sz, flags=cv.INTER_NEAREST,
borderMode=self.border_flag)
return torch.from_numpy(mask_t)