This repository has been archived by the owner on May 10, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
swepcalc.c
758 lines (707 loc) · 24.4 KB
/
swepcalc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
/*****************************************************
$Header: /home/dieter/sweph/RCS/swepcalc.c,v 1.74 2008/06/16 10:07:20 dieter Exp $
Placalc compatibility interface for Swiss Ephemeris.
*******************************************************/
/* Copyright (C) 1997 - 2008 Astrodienst AG, Switzerland. All rights reserved.
License conditions
------------------
This file is part of Swiss Ephemeris.
Swiss Ephemeris is distributed with NO WARRANTY OF ANY KIND. No author
or distributor accepts any responsibility for the consequences of using it,
or for whether it serves any particular purpose or works at all, unless he
or she says so in writing.
Swiss Ephemeris is made available by its authors under a dual licensing
system. The software developer, who uses any part of Swiss Ephemeris
in his or her software, must choose between one of the two license models,
which are
a) GNU public license version 2 or later
b) Swiss Ephemeris Professional License
The choice must be made before the software developer distributes software
containing parts of Swiss Ephemeris to others, and before any public
service using the developed software is activated.
If the developer choses the GNU GPL software license, he or she must fulfill
the conditions of that license, which includes the obligation to place his
or her whole software project under the GNU GPL or a compatible license.
See http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
If the developer choses the Swiss Ephemeris Professional license,
he must follow the instructions as found in http://www.astro.com/swisseph/
and purchase the Swiss Ephemeris Professional Edition from Astrodienst
and sign the corresponding license contract.
The License grants you the right to use, copy, modify and redistribute
Swiss Ephemeris, but only under certain conditions described in the License.
Among other things, the License requires that the copyright notices and
this notice be preserved on all copies.
Authors of the Swiss Ephemeris: Dieter Koch and Alois Treindl
The authors of Swiss Ephemeris have no control or influence over any of
the derived works, i.e. over software or services created by other
programmers which use Swiss Ephemeris functions.
The names of the authors or of the copyright holder (Astrodienst) must not
be used for promoting any software, product or service which uses or contains
the Swiss Ephemeris. This copyright notice is the ONLY place where the
names of the authors can legally appear, except in cases where they have
given special permission in writing.
The trademarks 'Swiss Ephemeris' and 'Swiss Ephemeris inside' may be used
for promoting such software, products or services.
*/
/*
* This file is the PLACALC compatibility interface for Swiss Ephemeris.
* It allows very easy porting of older Placalc application to the SwissEph.
* A user has to replace #include "placalc.h" and "housasp.h" with
* #include "swepcalc.h"
* If he has used "ourdef.h" he replaces it with "sweodef.h".
* Then he links his application with swepcalc.o and runs it against the
* Swiss Ephemeris DLL or linkable library.
*
* All calls which were present in the placalc sources are contained
* here, and either implemented directly or translated into Swiss Ephemeris
* calls.
*
*
*/
#include "swepcalc.h"
#include "swephexp.h"
/************************************************************
local globals, not exported
************************************************************/
static const int plac2swe[] = {SE_SUN, SE_MOON, SE_MERCURY, SE_VENUS, SE_MARS, SE_JUPITER, SE_SATURN, SE_URANUS, SE_NEPTUNE, SE_PLUTO, SE_MEAN_NODE, SE_TRUE_NODE, SE_CHIRON, SE_MEAN_APOG, SE_CERES, SE_PALLAS, SE_JUNO, SE_VESTA,};
/* If there occurs an internal error in placalc, a message is
* written into the string variable perrtx.
* The message can be read with placalc_get_errtext();
*/
static TLS char perrtx[AS_MAXCH];
static double ekl, nut;
/*
* mimimum and maximum distances computed over 1000 years with plamimax,
* required for relative distances rgeo, where the distance is given
* as 100 when a planet is closest and as 0 when farthest from earth.
*/
static const double rmima[CALC_N][2] = {
{ 0.98296342, 1.01704665},
{ 0.00238267, 0.00271861},
{ 0.54900496, 1.45169607},
{ 0.26411287, 1.73597885},
{ 0.37289847, 2.67626927},
{ 3.94877993, 6.45627627},
{ 7.99362824, 11.09276636},
{17.28622633, 21.10714104},
{28.81374786, 31.33507284},
{28.67716748, 50.29208774},
{ 0.00, 0.00259553}, /* nodes don't get a real value*/
{ 0.00, 0.00259553},
{ 7.36277475, 19.86585062}};
/**********************************************************
function nacalc ()
calculates an array of planet longitudes and speeds,
as needed for complete nathan data records.
The function knows itself how many planets and in which mode
they have to be calculated for Nathan.
return OK or ERR
The returned positions are in centiseconds, our standard
coordinate format for fast mathematics with planetary positions.
This function is just a template of how the calc() package
can be used.
**********************************************************/
int nacalc (double jd_ad, /* universal time relative julian date */
centisec *plon, /* returned longitudes */
centisec *pspe /* returned speeds, if not NULL pointer */
)
{
char err[AS_MAXCH];
int planet, flag;
double rlng, rrad, rlat, rspeed;
int result = OK;
flag = CALC_BIT_SPEED; /* same, with speed */
jd_ad += deltat( jd_ad ); /* ET = UT + Delta_T */
for (planet = SUN; planet <= MAXPL_NACALC; planet++) {
if (calc (planet, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
plon [planet] = swe_csnorm(swe_d2l (rlng * DEG));
if (pspe != NULL) pspe [planet] = swe_d2l (rspeed * DEG);
} else {
plon [planet] = -1;
if (pspe != NULL) pspe [planet] = 0;
if (result != ERR) { /* save first error message */
strcpy(err, placalc_get_errtext());
}
result = ERR;
}
}
if (result == ERR)
strcpy(perrtx, err);
return result;
} /* end nacalc */
/******************************************************************
* calculation server
* delivers positions in string format which can be sent easily
* over a communication line to the calculation client.
* if plalist = 0, only SUN .. CHIRON are delivered, no LILITH
******************************************************************/
int calcserv(int id, /* request id, random number to prevent phase err */
double jd_ad, /* time as relative Astrodienst julian date */
int flag, /* a set of CALC_BIT_ bitflags */
int plalist,/* bit list of planets to be computed, 0 = all */
char *so) /* output string, MUST BE LONG ENOUGH (800 bytes)*/
{
int p, planet, so_len;
double rlng, rrad, rlat, rspeed, rau[CALC_N];
centisec lcs[CALC_N], lpcs[CALC_N], betcs[CALC_N];
char s[AS_MAXCH];
if (plalist == 0) plalist = (1 << 13) - 1; /* sun .. chiron */;
/*
* flag determines whether deltat is added to t;
* if CALC_BIT_EPHE is set, jd_ad is considered as ephemeris time,
* otherwise as universal time.
*/
if ((flag & CALC_BIT_EPHE) == 0) {
jd_ad += deltat (jd_ad);
}
for (p = SUN; p < CALC_N; p++) {
if (! check_bit(plalist, p)) continue;
if (calc (p, jd_ad, flag, &rlng, &rrad, &rlat, &rspeed) == OK) {
lcs [p] = swe_d2l (rlng * DEG);
lpcs [p] = swe_d2l (rspeed * DEG);
betcs [p] = swe_d2l (rlat * DEG);
rau [p] = rrad;
} else {
sprintf(so,"error at planet %d", p);
return ( ERR);
}
}
/*
* format comma separated list: id,teph,flag,plalist,ekl,nut
* double is given with 8 digits precision after decimal point,
* all angles are given in centiseconds.
* then for each requested planet: longitude (csec)
* then for each requested planet, if wanted: speed (csec/day)
* then for each requested planet, if wanted: latitude (csec)
* then for each requested planet, if wanted: rgeo (units 0..999)
* then for each requested planet, if wanted: rau (A.U.)
*/
sprintf (so, "%d,%.8f,%d,%d,%d,%d", id, jd_ad, flag, plalist,
swe_d2l(ekl * DEG), swe_d2l (nut * DEG) );
so_len = strlen (so);
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%d", lcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
if (flag & CALC_BIT_SPEED) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%d", lpcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_BETA) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%d", betcs[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_RGEO) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%d", rel_geo(planet,rau[planet]));
strcat (so + so_len, s);
so_len += strlen (s);
}
}
if (flag & CALC_BIT_RAU) {
for (planet = SUN; planet < CALC_N; planet++) {
if (! check_bit(plalist, planet)) continue;
sprintf (s ,",%.8f", rau[planet]);
strcat (so + so_len, s);
so_len += strlen (s);
}
}
return (OK);
} /* end calcserv */
/******************************************************************
function calc():
This is the main routine for computing a planets position.
The function has several modes, which are controlled by bits in
the parameter 'flag'. The normal mode (flag == 0) computes
a planets apparent geocentric position in ecliptic coordinates relative to
the true equinox of date, without speed
Explanation of the arguments: see the functions header.
Returns OK or ERR (if some planet out of time range). OK and ERR are
defined in ourdef.h and must not be confused with TRUE and FALSE.
OK and ERR are of type int, not of type AS_BOOL.
Bits used in flag:
CALC_BIT_HELIO 0 = geocentric, 1 = heliocentric
CALC_BIT_NOAPP 0 = apparent positions, 1 = true positions
CALC_BIT_NONUT 0 = do nutation (true equinox of date)
1 = don't do nutation (mean equinox of date).
CALC_BIT_SPEED 0 = don't calc speed,
1 = calc speed
Time range:
The function can be used savely in the time range 3000 BC to
3000 AD.
Getting ecliptic and nutation:
calc(CALC_ONLY_ECL_NUT,teph,0,&nutv,&meaneklv,&eklv,NULL);
will return the values for time teph.
******************************************************************/
int calc(int planet, /* planet index as defined in placalc.h,
SUN = 0, MOON = 1 etc.
planet == -1 calc calculates only nut, ekl, meanekl */
double jd_ad, /* relative Astrodienst Juldate, ephemeris time.
Astrodienst Juldate is relative 31 Dec 1949, noon. */
int flag, /* See definition of flag bits above */
double *alng,
double *arad,
double *alat,
double *alngspeed)
/* pointers to the return variables:
alng = ecliptic longitude in degrees
arad = radius vector in AU (astronomic units)
alat = ecliptic latitude in degrees
alngspeed = speed of planet in degrees per day
*/
{
double tjd = jd_ad + JUL_OFFSET;
double x[6];
int32 iflagret = 0, iflag = 0;
int ipl;
/* planet number
*/
/* ecliptic and nutation */
if (planet == CALC_ONLY_ECL_NUT)
ipl = SE_ECL_NUT;
/* earth: placalc makes no difference between sun and earth,
* swisseph does */
else if (planet == SUN && (flag & CALC_BIT_HELIO))
ipl = SE_EARTH;
else if (planet >= SUN && planet <= VESTA)
ipl = plac2swe[planet];
else {
sprintf(perrtx, "invalid planet number %d. ", planet);
return ERR;
}
/* flag */
if (flag & CALC_BIT_HELIO)
if (ipl != SE_MEAN_NODE && ipl != SE_TRUE_NODE && ipl != SE_MEAN_APOG)
iflag |= SEFLG_HELCTR; /* lunar node and apogee is always geocentric */
if (flag & CALC_BIT_NOAPP)
iflag |= SEFLG_TRUEPOS;
if (flag & CALC_BIT_NONUT)
iflag |= SEFLG_NONUT;
if (flag & CALC_BIT_SPEED)
iflag |= SEFLG_SPEED;
/* ecliptic and nutation */
if ((iflagret = swe_calc(tjd, ipl, iflag, x, perrtx)) == ERR)
return iflagret;
if (ipl == SE_ECL_NUT) {
*alng = nut = x[2];
*arad = x[1];
*alat = ekl = x[0];
} else {
*alng = x[0];
*arad = x[2];
*alat = x[1];
*alngspeed = x[3];
}
return (OK);
} /* end calc */
int rel_geo(int planet, double rau)
{
/*
* get relative earth distance in range 0..1000:
* To compute the relative distance we use fixed values of
* mimimum and maximum distance measured empirically between
* 1300 AD and 2300 AD (see helconst.c).
* This approach is certainly fine for the
* outer planets, but not the best for Sun and Moon, where it
* would be better to look at the mean anomaly, i.e. the progress
* the planet makes on it's Kepler orbit.
* Considering the low importance astrologers give to the relative
* distance, we consider the effort not worthwile.
* Now we compare real radius with longtime-averaged distances.
*/
int rgeo;
if (planet == MEAN_NODE || planet == TRUE_NODE || planet == LILITH) {
return 0;
} else {
rgeo = 1000 * (1.0 - (rau - rmima[planet][0]) / (rmima[planet][1] - rmima[planet][0]));
}
if (rgeo < 0)
rgeo = 0;
else if (rgeo > 999)
rgeo = 999;
return rgeo;
}
/*
* get the planet index for an AFL letter
* returns -1 if the letter does not correspond to a planet.
*/
int afl2planet(int afl)
{
int p;
switch (afl) {
case AFL_SUN : p = SUN; break;
case AFL_MON : p = MOON; break;
case AFL_MER : p = MERCURY; break;
case AFL_VEN : p = VENUS; break;
case AFL_MAR : p = MARS; break;
case AFL_JUP : p = JUPITER; break;
case AFL_SAT : p = SATURN; break;
case AFL_URA : p = URANUS; break;
case AFL_NEP : p = NEPTUNE; break;
case AFL_PLU : p = PLUTO; break;
case AFL_MNODE : p = MEAN_NODE; break;
case AFL_TNODE : p = TRUE_NODE; break;
case AFL_CHI : p = CHIRON; break;
case AFL_LIL : p = LILITH; break;
case AFL_CER : p = CERES; break;
case AFL_PAL : p = PALLAS; break;
case AFL_JUN : p = JUNO; break;
case AFL_VES : p = VESTA; break;
case AFL_AC : p = AC; break;
case AFL_MC : p = MC; break;
default : p = -1; break;
}
return p;
}
/*
* get the AFL letter for a planet
* returns -1 if no letter corresponds to a planet.
*/
int planet2afl(int planet)
{
switch (planet) {
case SUN: return AFL_SUN;
case MOON: return AFL_MON;
case MERCURY: return AFL_MER;
case VENUS: return AFL_VEN;
case MARS: return AFL_MAR;
case JUPITER: return AFL_JUP;
case SATURN: return AFL_SAT;
case URANUS: return AFL_URA;
case NEPTUNE: return AFL_NEP;
case PLUTO: return AFL_PLU;
case MEAN_NODE: return AFL_MNODE;
case TRUE_NODE: return AFL_TNODE;
case CHIRON: return AFL_CHI;
case LILITH: return AFL_LIL;
case CERES: return AFL_CER;
case PALLAS: return AFL_PAL;
case JUNO: return AFL_JUN;
case VESTA: return AFL_VES;
case AC: return AFL_AC;
case MC: return AFL_MC;
}
if (planet >= FIRST_HSNR && planet <= LAST_HSNR)
return AFL_HOUSE;
else
return -1;
}
/*
* get the 2-letter abbreviation for a planet
* returns ?? if not defined
*/
char *planet2abbr2(int planet)
{
switch (planet) {
case SUN: return "su";
case MOON: return "mo";
case MERCURY: return "me";
case VENUS: return "ve";
case MARS: return "ma";
case JUPITER: return "ju";
case SATURN: return "sa";
case URANUS: return "ur";
case NEPTUNE: return "ne";
case PLUTO: return "pl";
case MEAN_NODE: return "mn";
case TRUE_NODE: return "tn";
case CHIRON: return "ch";
case LILITH: return "li";
case CERES: return "ce";
case PALLAS: return "pa";
case JUNO: return "jn";
case VESTA: return "vs";
case AC: return "ac";
case MC: return "mc";
}
return "??";
}
/*
* get the 3-letter abbreviation for a planet
* returns ??? if not defined
*/
char *planet2abbr3(int planet)
{
switch (planet) {
case SUN: return "sun";
case MOON: return "mon";
case MERCURY: return "mer";
case VENUS: return "ven";
case MARS: return "mar";
case JUPITER: return "jup";
case SATURN: return "sat";
case URANUS: return "ura";
case NEPTUNE: return "nep";
case PLUTO: return "plu";
case MEAN_NODE: return "mno";
case TRUE_NODE: return "tno";
case CHIRON: return "chi";
case LILITH: return "lil";
case CERES: return "cer";
case PALLAS: return "pal";
case JUNO: return "jun";
case VESTA: return "ves";
case AC: return "asc";
case MC: return "mc ";
}
return "???";
}
char *placalc_set_ephepath(char *path)
{
static TLS char *epath;
if (path == NULL) return epath;
if (epath != NULL)
free((void *) epath);
epath = malloc(strlen(path) + 1);
if (epath != NULL) {
strcpy(epath, path);
swe_set_ephe_path(epath);
}
return epath;
}
void placalc_close_files()
{
swe_close();
}
char *placalc_get_errtext()
{
return perrtx;
}
/*****************************************************
deltat(t): returns delta t (in julian days) from universal time t
is included by users
ET = UT + deltat
******************************************************/
double deltat (double jd_ad) /* Astrodienst relative julian date */
{
return swe_deltat(jd_ad + JUL_OFFSET);
}
/**********************************************************
* get fixstar positions
* parameters:
* star
* if string star contains a name, this star is searched.
* if it contains a number, the n'th star of the file
* is returned, starting with 0.
* In any case the name of the star is returned.
* jd absolute julian day
* lon, lat pointer for returning the ecliptic coordinates
* (mean ecliptic and equinox of date)
**********************************************************/
int fixstar(char *star, double jd, double *lon, double *lat)
{
double x[6];
int i;
int32 retflag;
/* if call by number, fixstar() is 0-based,
* whereas swe_fixstar starts with 1 */
if (isdigit((int) *star)) {
i = atoi(star);
sprintf(star, "%d", i+1);
}
retflag = swe_fixstar(star, jd, 0, x, perrtx);
*lon = x[0];
*lat = x[1];
return((int) retflag);
}
/******************************************************************/
double diff8360 (double a, double b)
/* a - b on a 360 degree circle, result -180..180*/
{
double d;
d = a - b;
if ( d >= 180.0 ) return( d - 360.0 );
if ( d < -180.0 ) return( d + 360.0 );
return( d );
} /* diff8360 */
/*
* originally in swephous.c
*/
/*************************************
return in which house pp is;
houses are numbered from 1 .. 12
*************************************/
int HouseNr(struct houses *hsp, CSEC pp)
{
CSEC cx;
int i = 2;
cx = swe_difcsn(pp, hsp->cusp [1]); /* distance from cusp 1 */
while (i < 13 && cx >= difcsn(hsp->cusp [i], hsp->cusp [1])) i++;
return (i - 1);
}
/************************************
returns the inp-house number, where pp is in
houses are numbered from 1 .. 12
************************************/
int InpHouseNr (struct houses *hsp, CSEC pp, CSEC *coff)
{
CSEC cx;
int i = 2;
cx = swe_difcsn(pp, hsp->cusp [1] + coff [1]);
while(i<13 && cx >= swe_difcsn(hsp->cusp[i] + coff[i], hsp->cusp[1] + coff[1]))
i++;
return (i - 1);
}
/* variation of InpHouseNr(). Able to handle house pre-orbs that are
* proportional to house size.
* value 1 in doff[0] means that the offset is proportional to house size,
* e.g. doff[ihs] = -5 means here:
* doff[ihs] = -5 / 30 * preceding_house_size;
* We first calculate the absolute offsets for each house of our birth chart,
* then call the function InpHouseNr() with those values.
*/
int InpHouseNr2 (struct houses *hsp, CSEC pp, CSEC *coff)
{
int i, j;
CSEC myoff[13];
for (i = 0; i < 13; i++)
myoff[i] = coff[i];
if (myoff[0] == 1) {
for (i = 1; i < 13; i++) {
j = i + 1;
if (j > 12) j = 1;
myoff[j] = swe_degnorm((hsp->cusp[j] - hsp->cusp[i]) / 360000.0) / 30.0 * myoff[j];
}
}
return InpHouseNr(hsp, pp, myoff);
}
/* ********************************************************* */
/* Houses: */
/* ********************************************************* */
/* Koch and Placidus don't work in the polar circle. */
/* We swap MC/IC so that MC is always before AC in the zodiac */
/* We than divide the quadrants into 3 equal parts. */
/* ********************************************************* */
/* All angles are expressed in centiseconds (1/100th of a */
/* second of arc) and integer arithmetic is used for these. */
/* Special trigonometric functions dsin, dcos etc. are im- */
/* plemented for arguments in centiseconds. */
/* ********************************************************* */
/* Arguments: th = sidereal time (angle 0..360 degrees */
/* hsy = letter code for house system; implemen- */
/* ted are P,K,C,R,E,V. */
/* fi = geographic latitude */
/* ekl = obliquity of the ecliptic */
/* iteration_count = number of iterations in */
/* Placidus calculation; can be 1 or 2. */
/* ********************************************************* */
void CalcHouses(CSEC th, CSEC fi, CSEC mekl, char hsy, int iteration_count,
struct houses *hsp )
{
int retc = 0, i;
double cs2deg = 360000;
double cusps[13];
double ascmc[10];
/* iteration_count is always 2 */
retc = swe_houses_armc(th / cs2deg, fi / cs2deg, mekl / cs2deg, (int) hsy,
cusps, ascmc);
for (i = 0; i < 13; i++)
hsp->cusp[i] = swe_d2l(cusps[i] * cs2deg);
hsp->ac = swe_d2l(ascmc[0] * cs2deg);
hsp->mc = swe_d2l(ascmc[1] * cs2deg);
/*
* this is just to shut up lint
*/
retc += iteration_count;
iteration_count = retc;
} /* procedure houses */
/******************************/
void RecalcAspects(struct AspectType *a)
{
centisec diff,orbis;
int p1, p2, i;
struct aspRec *arp;
if (a->ppos2 == NULL) { /* no set ppos2, no interaspects */
for (p1 = 0; p1 < a->NrOfPlanets; p1++) {
a->Asp[p1][p1].index = 0; /* ignore p1 conjunct p1 */
for (p2 = p1 + 1; p2 < a->NrOfPlanets; p2++) {
arp = &(a->Asp[p1][p2]);
diff = a->PlanetPos [p2] - a->PlanetPos [p1];
if (diff >= DEG180)
diff -= DEG360;
else if (diff < - DEG180)
diff += DEG360;
i = 1;
arp->index = 0;
while (i <= a->NrOfAspects) {
orbis = ABS4 (diff) - a->Angle [i];
if (ABS4 (orbis) <= a->Maxorb [i]) {
arp->index = i;
arp->orb = orbis;
break; /* out of while */
}
i++;
}
a->Asp [p2][p1].index = arp->index;
a->Asp [p2][p1].orb = arp->orb;
} /* for p2 */
} /* for p1 */
} else { /* interaspects between set 1 and set 2 */
for (p1 = 0; p1 < a->NrOfPlanets; p1++) {
for (p2 = 0; p2 < a->NrOfPlanets; p2++) {
arp = &(a->Asp[p1][p2]);
diff = a->ppos2 [p2] - a->PlanetPos [p1];
if (diff >= DEG180)
diff -= DEG360;
else if (diff < - DEG180)
diff += DEG360;
i = 1;
arp->index = 0;
while (i <= a->NrOfAspects) {
orbis = ABS4 (diff) - a->Angle [i];
if (ABS4 (orbis) <= a->Maxorb [i]) {
arp->index = i;
arp->orb = orbis;
break; /* out of while */
}
i++;
}
} /* for p2 */
} /* for p1 */
} /* else */
a->dataValid = TRUE;
}
/***********************************************************
function sidtime (t): returns sidereal time at greenwich;
Parameters differ from ASYS version! after AESuppl. 1961, page 75
version 24-oct-87
***********************************************************/
double sidtime (double jd_ad, double ecl, double nuta)
/* jd_ad relative julian date */
/* ecl, nuta ecliptic and nutation of date, in degrees */
{
return swe_sidtime0(jd_ad + JUL_OFFSET, ecl, nuta);
}
# ifdef INTEL_BYTE_ORDER
/********************************************************************/
void longreorder (UCHAR *p, int n)
/* p points to memory filled with int32 values; for
each of the values the seqeuence of the four bytes
has to be reversed, to translate HP-UX and VAX
ordering to MSDOS/Turboc ordering */
{
int i;
unsigned char c0, c1, c2, c3;
for (i = 0; i < n; i += 4, p += 4) {
c0 = *p;
c1 = *(p + 1);
c2 = *(p + 2);
c3 = *(p + 3);
*p = c3;
*(p + 1) = c2;
*(p + 2) = c1;
*(p + 3) = c0;
}
}
# endif