From ff40ab62d1ed46f416ab826523cb4c8ad6c89396 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?L=C3=BCtf=C3=BC=20Ayd=C4=B1n=20U=C3=87AR?= <112983699+wroomhers@users.noreply.github.com> Date: Sun, 28 Jan 2024 21:01:32 +0300 Subject: [PATCH] Update README.rst --- README.rst | 325 +++++++++-------------------------------------------- 1 file changed, 54 insertions(+), 271 deletions(-) diff --git a/README.rst b/README.rst index ef061f4..cbe4115 100644 --- a/README.rst +++ b/README.rst @@ -1,317 +1,100 @@ .. image:: /readme/images/labelimg.png :target: https://github.com/heartexlabs/label-studio -Label Studio is a modern, multi-modal data annotation tool +Label Studio modern, çok modlu bir veri işaretleme aracıdır ======= -LabelImg, the popular image annotation tool created by Tzutalin with the help of dozens contributors, is no longer actively being developed and has become part of the Label Studio community. Check out `Label Studio `__, the most flexible open source data labeling tool for images, text, hypertext, audio, video and time-series data. `Install `__ Label Studio and join the `slack community `__ to get started. +Tzutalin tarafından düzinelerce katkıda bulunanın yardımıyla oluşturulan popüler resim açıklama aracı LabelImg, artık aktif olarak geliştirilmiyor ve Label Studio topluluğunun bir parçası haline geldi. Görüntüler, metin, hiper metin, ses, video ve zaman serisi verileri için en esnek açık kaynaklı veri etiketleme aracı olan 'Label Studio '__'ya göz atın. Başlamak için `__ Label Studio'yu yükleyin ve `slack topluluğuna `__ katılın. -.. image:: /readme/images/label-studio-1-6-player-screenshot.png - :target: https://github.com/heartexlabs/label-studio - -About LabelImg -======== - -.. image:: https://img.shields.io/pypi/v/labelimg.svg - :target: https://pypi.python.org/pypi/labelimg - -.. image:: https://img.shields.io/github/workflow/status/tzutalin/labelImg/Package?style=for-the-badge - :alt: GitHub Workflow Status - -.. image:: https://img.shields.io/badge/lang-en-blue.svg - :target: https://github.com/tzutalin/labelImg - -.. image:: https://img.shields.io/badge/lang-zh-green.svg - :target: https://github.com/tzutalin/labelImg/blob/master/readme/README.zh.rst - -.. image:: https://img.shields.io/badge/lang-jp-green.svg - :target: https://github.com/tzutalin/labelImg/blob/master/readme/README.jp.rst - -LabelImg is a graphical image annotation tool. - -It is written in Python and uses Qt for its graphical interface. -Annotations are saved as XML files in PASCAL VOC format, the format used -by `ImageNet `__. Besides, it also supports YOLO and CreateML formats. -.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo3.jpg - :alt: Demo Image +`Demo videosu `__ -.. image:: https://raw.githubusercontent.com/tzutalin/labelImg/master/demo/demo.jpg - :alt: Demo Image - -`Watch a demo video `__ - -Installation +Kurulum ------------------ -Get from PyPI but only python3.0 or above +Ubuntu 20.04 Kurulum ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -This is the simplest (one-command) install method on modern Linux distributions such as Ubuntu and Fedora. - -.. code:: shell - - pip3 install labelImg - labelImg - labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE] - - -Build from source -~~~~~~~~~~~~~~~~~ - -Linux/Ubuntu/Mac requires at least `Python -2.6 `__ and has been tested with `PyQt -4.8 `__. However, `Python -3 or above `__ and `PyQt5 `__ are strongly recommended. +Ubuntu 20.04 sistemler için kurulum yönergesi - -Ubuntu Linux -^^^^^^^^^^^^ - -Python 3 + Qt5 +Öncelikle pip yoksa kurulmalıdır. .. code:: shell - sudo apt-get install pyqt5-dev-tools - sudo pip3 install -r requirements/requirements-linux-python3.txt - make qt5py3 - python3 labelImg.py - python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] + python3 -m pip --version -macOS -^^^^^ - -Python 3 + Qt5 +Şeklinde kontrol edilir. Eğer versiyon görünmezse aşağıdaki adımlarla kurulur. .. code:: shell - brew install qt # Install qt-5.x.x by Homebrew - brew install libxml2 - - or using pip - - pip3 install pyqt5 lxml # Install qt and lxml by pip - - make qt5py3 - python3 labelImg.py - python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] - - -Python 3 Virtualenv (Recommended) + sudo apt-get install python3-setuptools + sudo python3 -m easy_install install pip -Virtualenv can avoid a lot of the QT / Python version issues +Daha sonrasında LabelImg Dosyası git komutuyla indirilir. .. code:: shell - brew install python3 - pip3 install pipenv - pipenv run pip install pyqt5==5.15.2 lxml - pipenv run make qt5py3 - pipenv run python3 labelImg.py - [Optional] rm -rf build dist; pipenv run python setup.py py2app -A;mv "dist/labelImg.app" /Applications + git clone https://github.com/HumanSignal/labelImg.git -Note: The Last command gives you a nice .app file with a new SVG Icon in your /Applications folder. You can consider using the script: build-tools/build-for-macos.sh - - -Windows -^^^^^^^ - -Install `Python `__, -`PyQt5 `__ -and `install lxml `__. - -Open cmd and go to the `labelImg <#labelimg>`__ directory +labelImg klasörüne girilir ve gerekli bağımlılıklar kurulur. .. code:: shell - pyrcc4 -o libs/resources.py resources.qrc - For pyqt5, pyrcc5 -o libs/resources.py resources.qrc + cd labelImg + sudo apt-get install pyqt5-dev-tools + sudo pip3 install -r requirements/requirements-linux-python3.txt + make qt5py3 - python labelImg.py - python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] - -If you want to package it into a separate EXE file +LabelImg başlatılır ve diğer adımlara geçilir. .. code:: shell - Install pyinstaller and execute: - - pip install pyinstaller - pyinstaller --hidden-import=pyqt5 --hidden-import=lxml -F -n "labelImg" -c labelImg.py -p ./libs -p ./ + python3 labelImg.py -Windows + Anaconda -^^^^^^^^^^^^^^^^^^ +Her kullanım için labelImg klasörüne gidilip başlatılması gerekmektedir. -Download and install `Anaconda `__ (Python 3+) -Open the Anaconda Prompt and go to the `labelImg <#labelimg>`__ directory -.. code:: shell +Ek açıklama görselleştirmesi +~~~~~~~~~~~~~~~~~~~~~~~ - conda install pyqt=5 - conda install -c anaconda lxml - pyrcc5 -o libs/resources.py resources.qrc - python labelImg.py - python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE] +1. Mevcut etiket dosyasını görsellerle aynı klasöre kopyalayın. Etiketler dosyasının adı, resim dosyası adıyla aynı olmalıdır. -Use Docker -~~~~~~~~~~~~~~~~~ -.. code:: shell +2. Dosya'ya tıklayın ve 'Dizini Aç'ı seçin, ardından görüntü klasörünü açın. - docker run -it \ - --user $(id -u) \ - -e DISPLAY=unix$DISPLAY \ - --workdir=$(pwd) \ - --volume="/home/$USER:/home/$USER" \ - --volume="/etc/group:/etc/group:ro" \ - --volume="/etc/passwd:/etc/passwd:ro" \ - --volume="/etc/shadow:/etc/shadow:ro" \ - --volume="/etc/sudoers.d:/etc/sudoers.d:ro" \ - -v /tmp/.X11-unix:/tmp/.X11-unix \ - tzutalin/py2qt4 +3. Dosya Listesi'nde görseli seçin, o görseldeki tüm nesneler için sınırlayıcı kutu ve etiket görünecektir. - make qt4py2;./labelImg.py - -You can pull the image which has all of the installed and required dependencies. `Watch a demo video `__ - - -Usage ------ - -Steps (PascalVOC) -~~~~~~~~~~~~~~~~~ - -1. Build and launch using the instructions above. -2. Click 'Change default saved annotation folder' in Menu/File -3. Click 'Open Dir' -4. Click 'Create RectBox' -5. Click and release left mouse to select a region to annotate the rect - box -6. You can use right mouse to drag the rect box to copy or move it - -The annotation will be saved to the folder you specify. - -You can refer to the below hotkeys to speed up your workflow. - -Steps (YOLO) -~~~~~~~~~~~~ - -1. In ``data/predefined_classes.txt`` define the list of classes that will be used for your training. - -2. Build and launch using the instructions above. - -3. Right below "Save" button in the toolbar, click "PascalVOC" button to switch to YOLO format. - -4. You may use Open/OpenDIR to process single or multiple images. When finished with a single image, click save. - -A txt file of YOLO format will be saved in the same folder as your image with same name. A file named "classes.txt" is saved to that folder too. "classes.txt" defines the list of class names that your YOLO label refers to. - -Note: - -- Your label list shall not change in the middle of processing a list of images. When you save an image, classes.txt will also get updated, while previous annotations will not be updated. - -- You shouldn't use "default class" function when saving to YOLO format, it will not be referred. - -- When saving as YOLO format, "difficult" flag is discarded. - -Create pre-defined classes -~~~~~~~~~~~~~~~~~~~~~~~~~~ - -You can edit the -`data/predefined\_classes.txt `__ -to load pre-defined classes - -Annotation visualization -~~~~~~~~~~~~~~~~~~~~~~~~ - -1. Copy the existing lables file to same folder with the images. The labels file name must be same with image file name. - -2. Click File and choose 'Open Dir' then Open the image folder. - -3. Select image in File List, it will appear the bounding box and label for all objects in that image. - -(Choose Display Labels mode in View to show/hide lablels) +(Etiketleri göstermek/gizlemek için Görünüm'de Etiketleri Görüntüle modunu seçin) Hotkeys ~~~~~~~ -+--------------------+--------------------------------------------+ -| Ctrl + u | Load all of the images from a directory | -+--------------------+--------------------------------------------+ -| Ctrl + r | Change the default annotation target dir | -+--------------------+--------------------------------------------+ -| Ctrl + s | Save | -+--------------------+--------------------------------------------+ -| Ctrl + d | Copy the current label and rect box | -+--------------------+--------------------------------------------+ -| Ctrl + Shift + d | Delete the current image | -+--------------------+--------------------------------------------+ -| Space | Flag the current image as verified | -+--------------------+--------------------------------------------+ -| w | Create a rect box | -+--------------------+--------------------------------------------+ -| d | Next image | -+--------------------+--------------------------------------------+ -| a | Previous image | -+--------------------+--------------------------------------------+ -| del | Delete the selected rect box | -+--------------------+--------------------------------------------+ -| Ctrl++ | Zoom in | -+--------------------+--------------------------------------------+ -| Ctrl-- | Zoom out | -+--------------------+--------------------------------------------+ -| ↑→↓← | Keyboard arrows to move selected rect box | -+--------------------+--------------------------------------------+ - -**Verify Image:** - -When pressing space, the user can flag the image as verified, a green background will appear. -This is used when creating a dataset automatically, the user can then through all the pictures and flag them instead of annotate them. - -**Difficult:** - -The difficult field is set to 1 indicates that the object has been annotated as "difficult", for example, an object which is clearly visible but difficult to recognize without substantial use of context. -According to your deep neural network implementation, you can include or exclude difficult objects during training. - -How to reset the settings -~~~~~~~~~~~~~~~~~~~~~~~~~ - -In case there are issues with loading the classes, you can either: - -1. From the top menu of the labelimg click on Menu/File/Reset All -2. Remove the `.labelImgSettings.pkl` from your home directory. In Linux and Mac you can do: - `rm ~/.labelImgSettings.pkl` - - -How to contribute -~~~~~~~~~~~~~~~~~ - -Send a pull request - -License -~~~~~~~ -`Free software: MIT license `_ - -Citation: Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg - -Related and additional tools -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -1. `Label Studio `__ to label images, text, audio, video and time-series data for machine learning and AI -2. `ImageNet Utils `__ to - download image, create a label text for machine learning, etc -3. `Use Docker to run labelImg `__ -4. `Generating the PASCAL VOC TFRecord files `__ -5. `App Icon based on Icon by Nick Roach (GPL) `__ -6. `Setup python development in vscode `__ -7. `The link of this project on iHub platform `__ -8. `Convert annotation files to CSV format or format for Google Cloud AutoML `__ - - - -Stargazers over time -~~~~~~~~~~~~~~~~~~~~ - -.. image:: https://starchart.cc/tzutalin/labelImg.svg ++--------------------+----------------------------------------------+ +| Ctrl + u | Bir dizindeki tüm görüntüleri yükleyin | ++--------------------+----------------------------------------------+ +| Ctrl + r | Bir dizindeki tüm görüntüleri yükleyin | ++--------------------+----------------------------------------------+ +| Ctrl + s | Kaydet | ++--------------------+----------------------------------------------+ +| Ctrl + d | Bir dizindeki tüm görüntüleri yükleyin | ++--------------------+----------------------------------------------+ +| Ctrl + Shift + d | Açık görüntüyü sil | ++--------------------+----------------------------------------------+ +| Space | Seçili görüntüyü doğrulanmış olarak işaretle | ++--------------------+----------------------------------------------+ +| w | Kutu Oluştur | ++--------------------+----------------------------------------------+ +| d | Sıradaki Görsel | ++--------------------+----------------------------------------------+ +| a | Önceki Görsel | ++--------------------+----------------------------------------------+ +| del | Seçili Kutucuğu sil | ++--------------------+----------------------------------------------+ +| Ctrl++ | Yaklaştır | ++--------------------+----------------------------------------------+ +| Ctrl-- | Uzaklaştır | ++--------------------+----------------------------------------------+ +| ↑→↓← | Seçili kutuyu ok yönünde ilerlet | ++--------------------+----------------------------------------------+