-
Notifications
You must be signed in to change notification settings - Fork 0
/
zuidema13tuebingen.tex
591 lines (501 loc) · 21.7 KB
/
zuidema13tuebingen.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
%\documentclass[pdf,landscape,a4]{seminar}
%\include{Preamble}
\documentclass[xcolor=table]{beamer}
%,handout
\mode<presentation>
{
\usetheme{Singapore}
}
\usepackage{latexsym}
\usepackage{amssymb, amsmath}
\usepackage{graphicx,graphics}
\setbeamertemplate{blocks}[rounded][shadow=true]
\usepackage{amsmath}
\usepackage[table]{xcolor}
\newcommand\x{\times}
\newcommand\g{\cellcolor{green!60}}
\newcommand\w{\cellcolor{red!60}}
\newcommand\y{\cellcolor{yellow!60}}
%,txfonts}
\usepackage{tikz-qtree}
%\usepackage[all]{xy}
%\usepackage{color}
\newcommand{\tuple}[1]{\langle #1 \rangle}
\newcommand{\norm}[1]{\left\| #1 \right\|}
\newcommand{\bin}[2]{\left(#1\atop{#2}\right)}
\title{Model selection in recursion experiments}
\author{Jelle Zuidema\\ ILLC, Universiteit van Amsterdam}
%\institute{}
\date{May 3d, 2013}
\newcommand{\sub}[1]{\mbox{\footnotesize #1}}
\newcommand{\cred}[1]{\textcolor{dred}{#1}}
\newcommand{\dgray}[1]{\textcolor{dgray}{#1}}
\newcommand{\ddarkblue}[1]{\textcolor{darkblue}{#1}}
\newcommand{\OUT}{{\cal O}}
\newcommand{\VEC}[1]{{\mathcal #1 }}
\newcommand{\THeta}{\VEC{\theta}}
%% \usepackage{tikz-qtree}
%% \tikzset{small/.style={level distance=20pt, sibling distance=0pt}}
%% \tikzset{straightLines/.style={edge from parent/.style={draw, edge from parent path = {(\tikzparentnode.south) -- +(0,-8pt) -| (\tikzchildnode)}}}}
%% \tikzset{reinforcedLines/.style={edge from parent/.style={draw,thick}}}
\newcommand{\ST}[1]{ \Tree #1 }
%% \newcommand{\ST}[1]{
%% \begin{tikzpicture}[straightLines]
%% \Tree #1
%% \end{tikzpicture}
%% }
\newcommand{\white}[1]{\textcolor{white}{#1}}
\newcommand{\black}[1]{\textcolor{black}{#1}}
\newcommand{\blue}[1]{\textcolor{blue}{#1}}
\newcommand{\pink}[1]{\textcolor{magenta}{#1}}
\newcommand{\red}[1]{\textcolor{red}{#1}}
\newcommand{\green}[1]{\textcolor{green}{#1}}
\newcommand{\yellow}[1]{\textcolor{yellow}{#1}}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\section{Motivation}
\label{sec:motivation}
\subsection{What is recursion}
% \begin{frame}{Recursion in natural language}
% \begin{itemize}[<+->]
% \item Gilligan claims that \red{Blair deceived} the
% public.
% \item Gilligan claims that \green{Campbell helped} \red{Blair deceive} the
% public.
% \item Gilligan claims that \blue{Kelly saw} \green{Campbell help} \red{Blair deceive} the
% public. \hfill \textbf{(tail recursion)}
% \item Gilligan behaupte dass \blue{Kelly} \green{Campbell} \red{Blair} das Publikum \red{bel\"ugen}
% \green{helfen} \blue{sah}. \hfill~\textbf{(center~embedding)}
% \item Gilligan beweert dat \blue{Kelly} \green{Campbell} \red{Blair} het publiek \blue{zag} \green{helpen}
% \red{bedriegen}. \hfill \textbf{(crossing dependencies)}
% \end{itemize}
% (Huybrechts, 1984)
% \end{frame}
% \begin{frame}{Recursion in natural language}
% \begin{itemize}[<+->]
% \item Strong 'performance constraints' on the level of embedding;
% \item Crucial point is not infinity, but generalization
% \item However information is stored in the brain about how to
% combine subjects, transitive verbs and objects ...
% \item ... that information can be used for all kinds of noun phrases
% and verbs
% \item ... at different levels of embedding
% \item ... while language users neatly distinguish its different
% usages in the same derivation/analysis.
% \end{itemize}
% \end{frame}
% \begin{frame}{Challenge for computational neuroscience}
% \begin{itemize}[<+->]
% \item Although there is a rich mathematical tradition for modelling
% recursive structure in language using symbolic grammar (Chomsky Hierarchy)...
% \item ... it remains a challenge for computational neuroscience:
% \begin{itemize}
% \item Elman-Christiansen-Chater style neural network models fail
% to model recursion adequately (appeal to performance
% constraints, but fail to demonstrate generalization);
% \item Hybrid symbolic-neural models show correct performance, but
% postulate a (symbolic) control structure with unspecified neural
% instantiation;
% \item Pollack-Whitney style fractal networks do demonstrate that
% recursion can be instantiated in neural tissue, but cannot (yet)
% account for learning;
% \end{itemize}
% \end{itemize}
% \end{frame}
% \begin{frame}
% "some further technical innovation is called for in neural network
% models, which will permit them to encode typed variables and the
% operation of instantiating them. I think that upon the development of
% such an innovation, the dialogue between linguistic theory and neural
% network modeling will begin to be more productive." -- Ray Jackendoff,
% Foundations of Language (2002), p65.
% \end{frame}
\begin{frame}%{Recursion}
\[
\left.
\begin{array}[c]{r}
\mbox{The topic should be}\\
\mbox{John likes}\\
\mbox{Peter and Mary were walking in}\\
\mbox{This summer, the place to be is}\\
\mbox{Sleeping on the beach on}\\
%\mbox{John}\\
%\mbox{John}\\
\end{array}
\right\} \only<1>{\ldots}
\only<2->{
\left\{
\begin{array}[c]{l}
\mbox{T\"ubingen}\\
\mbox{recursion}\\
\mbox{the island}\\
\only<3->{\mbox{the island in the river}}\\
\end{array}
\right.
}
\]
\end{frame}
\begin{frame}{Uniqueness}
\begin{itemize}[<+->]
\item Hauser, Chomsky, Fitch (2002): posit hypothesis that the only
mechanism in the faculty of language that is uniquely human and
uniquely linguistic (i.e., ``FLN'') is recursion;
\item Pinker \& Jackendoff (2005): claim many other traits are
uniquely human and uniquely linguistic, while recursion is a
property of other cognitive domains such as planning and visual
processing;
\item Many others claim recursion is not a real phenomenon (or at
best an epiphenomenon), not even in natural language.
\end{itemize}
\end{frame}
\subsection{Empirical investigation}
\begin{frame}{Empirical Data}
Given a useful operational definition of recursion, can we design experiments to establish:
\begin{itemize}[<+->]
\item whether recursion is real (in natural language or other domains)?
\item whether recursion is real in non-linguistic cognitive tasks?
\item whether recursion is uniquely human or can occur in other animals?
\end{itemize}
\end{frame}
\begin{frame}{Experimental Paradigms}
\begin{itemize}[<+->]
\item Psycholinguistics
\begin{itemize}
\item E.g., Neal Johnson (1965), The Psychological Reality of
Phrase-Structure Rules
\end{itemize}
\item Artificial Language Learning
\begin{itemize}
\item Fitch \& Hauser (2004) pioneered ALL studies where subjects
learn to distinguish $A^nB^n$ from $(AB)^n$
\end{itemize}
\item Planning
\begin{itemize}
\item Herbert Simon (1975), The functional equivalence of problem
solving skills: Towers of Hanoi
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}{Common problem}
\begin{itemize}[<+->]
\item Many alternative hypotheses that we need to control for
\item E.g., to distinguish $A^nB^n$ sequences from $(AB)^n$
sequences it suffices to look for:
\begin{enumerate}[<+->]
\item the bigram $AA$ (+)
\item the bigram $BB$ (+)
\item the bigram $BA$ (-)
\item the start $AA$ (+)
\item the end $BB$ (+)
\item the start $AB$ (-)
\item the end $AB$ (-)
\item any sequence of $A$'s followed by $B$'s ($A^nB^m$)
\item a mix of strategies 1-8
\end{enumerate}
\item Each of these alternative is plausible a priori, and none
involves context-freeness
\end{itemize}
\end{frame}
\begin{frame}{Excluding all alternatives is hard!}
\begin{itemize}[<+->]
\item Many studies use a set of grammatical stimuli $G$ and a set of
non-grammatical stimuli $NG$ and show subjects treat those
significantly differently;
\item This is insufficient, as for any choice of $NG$ many plausible alternative strategies predict significant differences.
\item More careful studies try to exclude alternatives by considering them one-by-one.
\item But in all studies in the $A^nB^n$-paradigm plausible alternatives remain.
\item E.g., Gentner et al. report significantly lower $d'$-scores for contrasts that primacy, recency and bigram strategies predict to be strong.
\end{itemize}
\end{frame}
\begin{frame}{Simulated data: mix of strategies}
\includegraphics[height=.8\textheight,clip,trim = 1.7cm 6.5cm 9.3cm 11.8cm]{mix-response-rates.pdf}
\small (Zuidema, 2013, CogSci)
\end{frame}
\begin{frame}{Simulated data: $d'$ controls}
\includegraphics[height=.8\textheight,clip,trim = 1cm 17.8cm 8.8cm 1cm]{II-dprimes-controls.pdf}
\small (Zuidema, 2013, CogSci)
\end{frame}
\subsection{Model selection}
\begin{frame}{Model selection}
\begin{itemize}[<+->]
\item Traditional approach to excluding alternative hypotheses, is
to include stimuli that are characteristic for each alternative in
a 'control set' of stimuli;
\item This approach fails when there are many alternatives.
\item Possible solution: 'model selection' - rather than trying to
get even more sophisticated about the control set, formulate
alternative models and calculate a goodness of
fit %(compare $\chi^2$)
with whichever data is available.
\item In a probabilistic paradigm, the probability of the empiricial
data (``likelihood'') under various alternative models is often
used as a criterion for model selection.
\end{itemize}
\end{frame}
\begin{frame}{van Heijningen, Visser, Zuidema \& ten Cate, 2009, PNAS}
\begin{itemize}
\item Every strategy (e.g., ``bigram-AA (+)'') categorizes sequences as correct / incorrect
\item We assumed a small probability of error ($p_{\sub{error}}$) w.r.t. the given categorization
\item We estimated $p_{\sub{error}}$ from the performance on stimuli seen in the training phase
\end{itemize}
\end{frame}
\begin{frame}{van Heijningen, Visser, Zuidema \& ten Cate, 2009, PNAS}
\[
\mbox{Likelihood}(\mbox{response}|A) = \left\{
\begin{array}[c]{l}
(1-p_{\sub{error}}) \mbox{ if response is correct}_A\\
p_{\sub{error}} \mbox{ if incorrect}_A
\end{array}
\right.
\]
\pause
\[
Likelihood(sequence) = (1-p_{\sub{error}})^{\#correct} \times p_{\sub{error}}^{\#incorrect}
\]
\pause
\begin{itemize}
\item For 3 birds, ``AA-bigram'' was the maximum likelihood strategy
\item For 1 bird, ``BB-recency'' was the maximum likelihood strategy
\item No evidence that any bird had acquired a context-free strategy
\end{itemize}
\end{frame}
\begin{frame}{This talk}
\begin{itemize}
\item In Van Heijningen et al. model selection was easy, because the
strategies considered were classifying stimuli simply as 'positive' or
'negative', and strategies were assumed to be stable over the
course of the experiment;
\item What if strategies involve more complex, internal
representations, that might moreover change over time?
\item In the remainder of the talk I focus on the technical
challenges we encounter when applying model selection to data from
a non-linguistic but ``recursive'' domain: the Towers of Hanoi
\end{itemize}
\end{frame}
\begin{frame}{Outline}
\tableofcontents
Thanks to: Mariette Huizinga (collaborator - VU Amsterdam), Marian Ortmans (data collection), Andrea Watson (data entry)
\end{frame}
\section{Data}
\label{sec:data}
\subsection{the Towers of Hanoi task}
\begin{frame}{Towers of Hanoi}
\centerline{
\includegraphics[height=.9\textheight]{towersofhanoi.png}}
\end{frame}
\begin{frame}{Simon's strategies}
\begin{description}[<+->]
\item[Goal-recursion:] To move a pyramid of size $n$ from peg $a$ to peg $b$, move a pyramid of size $n-1$ to peg $c$, ...
\item[Perceptual] (1) Identify the largest disk that is not on the target peg; (2) Move any movable smaller disk off the source peg; (3) ...
\item[Sophisticated Perceptual] (1) Identify the largest disk $d$ that is not on the target peg; (2) Identify the largest disk $d'$ obstructing $d$'s move; (3) Establish as a subgoal to move $d'$ to the remaining peg; ...
\item[Move-pattern:] (1) On odd-numbered moves, move the smallest disk; (2) on even-numbered moves, move the next-smallest disk that is exposed; (3) ...
\item[Rote learning:] Remember for every state what the optimal move is;
\end{description}
\end{frame}
\begin{frame}{Towers of Hanoi}
\begin{itemize}
\item Rich mathematical tradition (state space = \alert{Sierpinski triangle}, optimal solution for 4 pegs still open);
\item Classic algorithmic problem in computer science - shortest path algorithm recursively defined (variant of \alert{Dijkstra's algorithm} - dynamic programming);
\item Popular task in \alert{developmental psychology} for assessing \emph{executive function} (attention, planning, etc).
\begin{itemize}
\item Standard analysis in psychology only involves checking whether for a given item, subjects have followed the optimal path
\end{itemize}
\end{itemize}
\end{frame}
\subsection{the Towers of Hanoi state space}
\begin{frame}{State space}
\begin{itemize}[<+->]
\item Every disk can be at each of the three pegs;
\item We can represent states with for each disk (from small to large) a number indicating the peg it is on.
\item I.e., 1133 represents a state where the smallest two disk are on the first peg, and the largest two disks on the third peg;
\item There are $3\times3\times3\times3=81$ states.
\item We can plot those states such that two states that can be reached from each other by a valid move are neighbours.
\end{itemize}
\end{frame}
\begin{frame}{State space}
\centerline{
\scalebox{1.8}{
\small
\begin{picture}(110,100)
\qbezier(5,5)(27.5,45)(50,85)
\qbezier(50,85)(72.5,45)(95,5)
\qbezier(95,5)(50,5)(5,5)
\put(0,-10){111\red{1}}
\put(50,90){222\red{2}}
\put(95,15){333\red{3}}
\only<2->{\put(130,25){\vector(-2,1){80}}}
\end{picture}
}
\only<2->{\scalebox{.6}{
\large
\begin{picture}(110,100)
\qbezier(5,5)(27.5,45)(50,85)
\qbezier(50,85)(72.5,45)(95,5)
\qbezier(95,5)(50,5)(5,5)
\put(0,-10){33\red{3}2}
\put(50,90){22\red{2}2}
\put(95,15){11\red{1}2}
\only<2->{\put(130,25){\vector(-2,1){80}}}
\end{picture}}}
\only<3->{\scalebox{.2}{
\Huge
\begin{picture}(110,100)
\qbezier(5,5)(27.5,45)(50,85)
\qbezier(50,85)(72.5,45)(95,5)
\qbezier(95,5)(50,5)(5,5)
\put(0,-20){1\red{1}22}
\put(50,90){2\red{2}22}
\put(95,15){3\red{3}22}
%\only<2->{\put(130,25){\vector(-2,1){80}}}
\end{picture}}}
}
\end{frame}
\begin{frame}%{Towers of Hanoi}
\centerline{
\includegraphics[height=.9\textheight]{toh.png}}
\end{frame}
\begin{frame}{Observation}
Errors reveal much about the strategy used
\end{frame}
\section{Analysis}
\label{sec:analysis}
\begin{frame}{Shortest path}
\begin{itemize}
\item Standard analysis in psychology is checking whether for a given item, subjects have followed the optimal path
\item If they do make errors, can we use the type of errors to infer something about the strategy used?
\end{itemize}
\end{frame}
\begin{frame}{Alternative Strategies}
\begin{description}[<+->]
\item[Random walk:] every neighbour has identical probability of being moved to;
\item[Optimal path (with 'performance' noise):] $p_{\sub{optimal}}=0.9$
\item[Subgoal-confusion:] compute sequence of subgoals on the way to the main goal, but possibly confuse subgoals with 'similar' states.
\end{description}
\end{frame}
\begin{frame}{Subgoal-confusion: technicalities I}
\begin{itemize}[<+->]
\item We have a sequence of \emph{observable} moves from the subject;
\item The subject had a sequence of subgoals in mind - but these are \emph{hidden};
\item We thus have a number of possible subgoal-sequences we should consider;
\item We must specify the probabilities of starting with each subgoal and transitioning to the next subgoal, as well as the probabilities of making each move given the current subgoal;
\item Technically, this is an instance of a Hidden Markov Model, and we can compute the probability of the \emph{observed} sequence (given each possible \emph{hidden sequence and its probability}) using the Viterbi/Inside algorithm.
\end{itemize}
\end{frame}
\begin{frame}{Subgoal-confusion: technicalities II}
I have implemented two simple subgoal-confusion models
\begin{description}
\item[Pyramid3confusion]: The set of candidate subgoals consists of all states with a pyramid of size 3 on the optimal path, as well as those states that have the pyramid of size 3 (but not the largest peg) on the wrong peg;
\pause
\item[Pyramid2confusion]: The set of candidate subgoals consists of all states with a pyramid of size 2 on the optimal path, as well as those states that have the pyramid of size 2 (but not the largest peg) on the wrong peg;
\end{description}
\pause
In both models, the player chooses a subgoal at random, and has a high probability ($p_{\sub{remain}}=0.8$) of sticking to it. When the subgoal is reached, or with small probability otherwise, the player selects a different subgoal at random.
\end{frame}
\begin{frame}{Subgoal-confusion: behaviour}
\begin{itemize}[<+->]
\item These subgoal-confusion models don't model human behaviour very closely (yet);
\item But they share with Simon's 'perceptual strategy' the property that they predict goal-directed behavior, with a high probability of moving towards a suboptimal subgoal for a while.
\item If people are following a variant of the 'perceptual strategy' we should expect a much better fit with the data than with the predictions from the optimal strategy.
\end{itemize}
\end{frame}
\begin{frame}{Results I: goodness of fit}
\includegraphics[trim= 5cm 10cm 10cm 10cm,height=.9\textheight]{loglikelihoods-toh.pdf}
ln(0.019)= -4
ln(0.0025) = -6
\end{frame}
\begin{frame}{Results II: consistency}
\end{frame}
\begin{frame}{Shortest paths}
\centerline{
\includegraphics[trim= 10cm 10cm 10cm 10cm,height=.9\textheight]{numbershortest.pdf}}
\end{frame}
\begin{frame}{Random walk}
\centerline{
\includegraphics[trim= 10cm 10cm 10cm 10cm,height=.8\textheight]{lrandom.pdf}}
\end{frame}
\begin{frame}{Optimal path}
\centerline{
\includegraphics[trim= 10cm 10cm 10cm 10cm,height=.8\textheight]{loptimal.pdf}}
\end{frame}
\begin{frame}{Subgoal-confusion}
\centerline{
\includegraphics[trim= 10cm 10cm 10cm 10cm,height=.8\textheight]{lpyramid3.pdf}}
\end{frame}
\section{Conclusions}
\label{sec:conclusions}
\begin{frame}{Conclusions}
\begin{itemize}
\item The state space of the Towers of Hanoi task provides a very powerful and intuitive representation of the behavior of players of the game;
\item Likelihood under the optimal model already gives a more consistent measure of perfomance than the often used number-of-optimal-paths;
\item Models that involve optimal as well as suboptimal subgoals fit the data better than either optimal or random walk models;
\end{itemize}
\end{frame}
\begin{frame}{}
\begin{itemize}
\item We can define probabilistic, 'generative' models to define
probability distributions over rich data, such as sequences of
actions or natural language;
\item We can use existing algorithms such as the Viterbi/Inside
algorithm to efficiently compute the likelihood of the data under
a given model;
\item We can use likelihood (or more complex criteria) to select the
best fitting model for every item, subject or population;
\item Ultimately, such techniques should help settle questions about
recursion in human language use, nonlinguistic cognitive tasks,
and non-human animals.
\end{itemize}
\end{frame}
\begin{frame}
this analysis of the Tower of Hanoi problem may serve as a warning,
illustrating the diversity of behavior that may be hidden under a
blanket label like ``problem-solution process'' even in a very
simple task environment. If we are to understand human
problem-solving behavior, we must get a solid grip on the strategies
that underlie that behavior, and we must avoid blending together in
a statistical stew quite diverse problem solving behaviors whose
real significance is lost in the averaging process. -- Herbert Simon
(1975, p288)
\end{frame}
\begin{frame}{Thanks!}
\begin{itemize}
\item
Thanks to: Mariette Huizinga (collaborator - VU Amsterdam), Marian Ortmans (data collection), Andrea Watson (data entry)
\item http://www.illc.uva.nl/$\sim$jzuidema
\item [email protected]
\end{itemize}
\end{frame}
\begin{frame}
\begin{tabular}{ccccccccccccccccccccccccccccccccc}
& a2b2 & a3b3 & a4b4 & ab2 & ab3 & ab4 & a1b3 & a3b1 & a2b3 &
a3b2 & a4 & b4 & abba & baab \\ \\
+anbn & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+abn & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
+anbm & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
+aa-primacy & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
+bb-recency & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 &
0 & 0 \\
+ab-recency & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
+aa-bigram & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\
+ba-bigram & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
+bb-bigram & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
+$\cdot\{1,4\}$ & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
+$\cdot\{1,6\}$ & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}
MIX: 25\% \textsc{+AA-primacy}, 15\% \textsc{+BB-recency}, and 10\%
for each of the other strategies in the table + \textsc{RANDOM}.
\end{frame}
\begin{frame}
A given mix of strategies defines for each stimulus a specific number
$f$ of GO-responses, from a fixed number of 100 presentations. To
generate some randomness, I assume each of the $f$ stimuli that should
be classified as a GO-response has a fixed probability $p=0.03$ to
receive a NOGO-response, and similarly, that each of the $100-f$
remaining stimuli have a probability $p$ of receiving a GO-response.
Hence, the final number of GO-responses is $g=x+y$, where both $x$ and
$y$ are sampled from a binomial distribution:
\[x \sim B(f,p), y \sim B(100-f,1-p)\]
\end{frame}
\end{document}
%---------------------------------------------------------------------------------------