-
Notifications
You must be signed in to change notification settings - Fork 1
/
ex_time_dw.py
133 lines (119 loc) · 4.1 KB
/
ex_time_dw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from api import API
from disaggregate import ADAE, DAE, Seq2Point, Seq2Seq, WindowGRU, RNN
import warnings
warnings.filterwarnings("ignore")
path = 'D:/workspace/nilm/data/redd_data.h5'
path = 'D:/workspace/nilm/code/databank/redd_data.h5'
DEBUG = False
TEST = True
def generate_method(debug, test):
if debug:
method = {
'DAE': DAE({'save-model-path': 'DAE', 'pretrained-model-path': None, 'n_epochs': 1, 'batch_size': 256}),
# 'RNN': RNN({'save-model-path': 'RNN', 'pretrained-model-path': None, 'n_epochs': 1, 'batch_size': 256}),
# 'Seq2Point': Seq2Point({'save-model-path': 'Seq2Point', 'pretrained-model-path': None, 'n_epochs': 1, 'batch_size': 256}),
# 'Seq2Seq': Seq2Seq({'save-model-path': 'Seq2Seq', 'pretraiTruened-model-path': None, 'n_epochs': 1, 'batch_size': 256}),
# 'GRU': WindowGRU({'save-model-path': 'GRU', 'pretrained-model-path': None, 'n_epochs': 1, 'batch_size': 256}),
}
else:
method = {
'DAE': DAE({'save-model-path': 'DAE', 'pretrained-model-path': None}),
'RNN': RNN({'save-model-path': 'RNN', 'pretrained-model-path': None}),
'Seq2Point': Seq2Point({'save-model-path': 'Seq2Point', 'pretrained-model-path': None}),
'Seq2Seq': Seq2Seq({'save-model-path': 'Seq2Seq', 'pretrained-model-path': None}),
'GRU': WindowGRU({'save-model-path': 'GRU', 'pretrained-model-path': None}),
}
if test:
method = {
'DAE': DAE({'save-model-path': 'DAE', 'pretrained-model-path': 'DAE', 'batch_size': 256}),
'RNN': RNN({'save-model-path': 'RNN', 'pretrained-model-path': 'RNN', 'batch_size': 256}),
'Seq2Point': Seq2Point(
{'save-model-path': 'Seq2Point', 'pretrained-model-path': 'Seq2Point', 'batch_size': 256}),
'Seq2Seq': Seq2Seq({'save-model-path': 'Seq2Seq', 'pretrained-model-path': 'Seq2Seq', 'batch_size': 256}),
'GRU': WindowGRU({'save-model-path': 'GRU', 'pretrained-model-path': 'GRU', 'batch_size': 256}),
}
return method
time_config = {
'train': {
1: {
'start_time': '2011-04-18',
'end_time': '2011-05-07'
},
2: {
'start_time': '2011-04-17',
'end_time': '2011-04-25'
},
3: {
'start_time': '2011-04-16',
'end_time': '2011-04-27'
},
4: {
'start_time': '2011-04-16',
'end_time': '2011-05-22'
},
6: {
'start_time': '2011-04-16',
'end_time': '2011-06-09'
}
},
'test': {
1: {
'start_time': '2011-05-07',
'end_time': '2011-05-24'
},
2: {
'start_time': '2011-04-25',
'end_time': '2011-05-22'
},
3: {
'start_time': '2011-04-27',
'end_time': '2011-05-30'
},
4: {
'start_time': '2011-05-22',
'end_time': '2011-06-03'
},
6: {
'start_time': '2011-06-09',
'end_time': '2011-06-13'
}
}
}
method = generate_method(DEBUG, TEST)
ex_train_dish_washer = {
'power': {
'mains': ['apparent', 'active'],
'appliance': ['apparent', 'active']
},
'sample_rate': 6,
'appliances': ['dish washer'],
'methods': method,
'isState': False,
'train': {
'datasets': {
'redd': {
'path': path,
'buildings': {
1: time_config['train'][1],
2: time_config['train'][2],
3: time_config['train'][3],
4: time_config['train'][4],
}
}
}
},
'test': {
'datasets': {
'redd': {
'path': path,
'buildings': {
1: time_config['test'][1],
2: time_config['test'][2],
3: time_config['test'][3],
4: time_config['test'][4],
}
}
}
}
}
API(ex_train_dish_washer)