Example:
cd $PATH_ROOT/tools/retinanet
python exportPb.py
Paper: SWA Object Detection
Usage:
- Step1: Train additional n epochs (MAX_ITERATION = SAVE_WEIGHTS_INTE*20 -> MAX_ITERATION = SAVE_WEIGHTS_INTE*(20+n) in cfgs.py)
cd $PATH_ROOT/tools/retinanet python train_swa.py
- Step2: Average n trained weights
cd $PATH_ROOT/tools python swa.py
- Step: Test
cd $PATH_ROOT/tools/retinanet python test_dota.py --test_dir='/PATH/TO/IMAGES/' --gpus=0,1,2,3,4,5,6,7 -ms (multi-scale testing, optional) -s (visualization, optional)
Pyrotch Pretrain Weights Conversion via MMdnn
Take resnet50 as an example (torch 1.5.1, torchvision 0.6.1):
- Step1:
pip install mmdnn mmdownload -f pytorch mmdownload -f pytorch -n resnet50 -o ./ mmtoir -f pytorch -d resnet50 --inputShape 3,224,224 -n imagenet_resnet50.pth mmtocode -f tensorflow --IRModelPath resnet50.pb --IRWeightPath resnet50.npy --dstModelPath tf_resnet50.py
- Step2: Migrate the generated network structure script to resnet_pytorch.py, and make some modifications, including the freezing of bn and the first few blocks, the construction of feature_dict variables, etc.