forked from dusty-nv/jetson-inference
-
Notifications
You must be signed in to change notification settings - Fork 0
/
segNet.h
241 lines (198 loc) · 9.61 KB
/
segNet.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/*
* Copyright (c) 2017, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#ifndef __SEGMENTATION_NET_H__
#define __SEGMENTATION_NET_H__
#include "tensorNet.h"
/**
* Name of default input blob for segmentation model.
* @ingroup deepVision
*/
#define SEGNET_DEFAULT_INPUT "data"
/**
* Name of default output blob for segmentation model.
* @ingroup deepVision
*/
#define SEGNET_DEFAULT_OUTPUT "score_fr_21classes"
/**
* Image segmentation with FCN-Alexnet or custom models, using TensorRT.
* @ingroup deepVision
*/
class segNet : public tensorNet
{
public:
/**
* Enumeration of pretrained/built-in network models.
*/
enum NetworkType
{
FCN_ALEXNET_PASCAL_VOC, /**< FCN-Alexnet trained on Pascal VOC dataset. */
FCN_ALEXNET_SYNTHIA_CVPR16, /**< FCN-Alexnet trained on SYNTHIA CVPR16 dataset. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_SYNTHIA_SUMMER_HD, /**< FCN-Alexnet trained on SYNTHIA SEQS summer datasets. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_SYNTHIA_SUMMER_SD, /**< FCN-Alexnet trained on SYNTHIA SEQS summer datasets. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_CITYSCAPES_HD, /**< FCN-Alexnet trained on Cityscapes dataset with 21 classes. */
FCN_ALEXNET_CITYSCAPES_SD, /**< FCN-Alexnet trained on Cityscapes dataset with 21 classes. @note To save disk space, this model isn't downloaded by default. Enable it in CMakePreBuild.sh */
FCN_ALEXNET_AERIAL_FPV_720p, /**< FCN-Alexnet trained on aerial first-person view of the horizon line for drones, 1280x720 and 21 output classes */
/* add new models here */
SEGNET_CUSTOM
};
/**
* Enumeration of mask/overlay filtering modes.
*/
enum FilterMode
{
FILTER_POINT, /**< Nearest point sampling */
FILTER_LINEAR /**< Bilinear filtering */
};
/**
* Parse a string from one of the built-in pretrained models.
* Valid names are "cityscapes-hd", "cityscapes-sd", "pascal-voc", ect.
* @returns one of the segNet::NetworkType enums, or segNet::CUSTOM on invalid string.
*/
static NetworkType NetworkTypeFromStr( const char* model_name );
/**
* Parse a string from one of the FilterMode values.
* Valid strings are "point", and "linear"
* @returns one of the segNet::FilterMode enums, or default segNet::FILTER_LINEAR on an error.
*/
static FilterMode FilterModeFromStr( const char* str, FilterMode default_value=FILTER_LINEAR );
/**
* Load a new network instance
*/
static segNet* Create( NetworkType networkType=FCN_ALEXNET_CITYSCAPES_SD, uint32_t maxBatchSize=2,
precisionType precision=TYPE_FASTEST, deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance
* @param prototxt_path File path to the deployable network prototxt
* @param model_path File path to the caffemodel
* @param class_labels File path to list of class name labels
* @param class_colors File path to list of class colors
* @param input Name of the input layer blob. @see SEGNET_DEFAULT_INPUT
* @param output Name of the output layer blob. @see SEGNET_DEFAULT_OUTPUT
* @param maxBatchSize The maximum batch size that the network will support and be optimized for.
*/
static segNet* Create( const char* prototxt_path, const char* model_path,
const char* class_labels, const char* class_colors=NULL,
const char* input = SEGNET_DEFAULT_INPUT,
const char* output = SEGNET_DEFAULT_OUTPUT,
uint32_t maxBatchSize=2, precisionType precision=TYPE_FASTEST,
deviceType device=DEVICE_GPU, bool allowGPUFallback=true );
/**
* Load a new network instance by parsing the command line.
*/
static segNet* Create( int argc, char** argv );
/**
* Destroy
*/
virtual ~segNet();
/**
* Perform the initial inferencing processing portion of the segmentation.
* The results can then be visualized using the Overlay() and Mask() functions.
* @param input float4 input image in CUDA device memory, RGBA colorspace with values 0-255.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param ignore_class label name of class to ignore in the classification (or NULL to process all).
*/
bool Process( float* input, uint32_t width, uint32_t height, const char* ignore_class="void" );
/**
* Produce a grayscale binary segmentation mask, where the pixel values
* correspond to the class ID of the corresponding class type.
*/
bool Mask( uint8_t* output, uint32_t width, uint32_t height );
/**
* Produce a colorized RGBA segmentation mask.
*/
bool Mask( float* output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR );
/**
* Produce the segmentation overlay alpha blended on top of the original image.
* @param input float4 input image in CUDA device memory, RGBA colorspace with values 0-255.
* @param output float4 output image in CUDA device memory, RGBA colorspace with values 0-255.
* @param width width of the input image in pixels.
* @param height height of the input image in pixels.
* @param ignore_class label name of class to ignore in the classification (or NULL to process all).
* @param type overlay visualization options
* @returns true on success, false on error.
*/
bool Overlay( float* output, uint32_t width, uint32_t height, FilterMode filter=FILTER_LINEAR );
/**
* Find the ID of a particular class (by label name).
*/
int FindClassID( const char* label_name );
/**
* Retrieve the number of object classes supported in the detector
*/
inline uint32_t GetNumClasses() const { return DIMS_C(mOutputs[0].dims); }
/**
* Retrieve the description of a particular class.
*/
inline const char* GetClassLabel( uint32_t id ) const { return id < mClassLabels.size() ? mClassLabels[id].c_str() : NULL; }
/**
* Retrieve the class synset category of a particular class.
*/
inline float* GetClassColor( uint32_t id ) const { return mClassColors[0] + (id*4); }
/**
* Set the visualization color of a particular class of object.
*/
void SetClassColor( uint32_t classIndex, float r, float g, float b, float a=255.0f );
/**
* Set a global alpha value for all classes (between 0-255),
* (optionally except for those that have been explicitly set).
*/
void SetGlobalAlpha( float alpha, bool explicit_exempt=true );
/**
* Retrieve the path to the file containing the class label descriptions.
*/
inline const char* GetClassPath() const { return mClassPath.c_str(); }
/**
* Retrieve the number of columns in the classification grid.
* This indicates the resolution of the raw segmentation output.
*/
inline uint32_t GetGridWidth() const { return DIMS_W(mOutputs[0].dims); }
/**
* Retrieve the number of rows in the classification grid.
* This indicates the resolution of the raw segmentation output.
*/
inline uint32_t GetGridHeight() const { return DIMS_H(mOutputs[0].dims); }
/**
* Retrieve the network type (alexnet or googlenet)
*/
inline NetworkType GetNetworkType() const { return mNetworkType; }
/**
* Retrieve a string describing the network name.
*/
inline const char* GetNetworkName() const { return (mNetworkType != SEGNET_CUSTOM ? "FCN_Alexnet" : "segNet"); }
protected:
segNet();
bool classify( const char* ignore_class );
bool overlayPoint( float* input, uint32_t in_width, uint32_t in_height, float* output, uint32_t out_width, uint32_t out_height, bool mask_only );
bool overlayLinear( float* input, uint32_t in_width, uint32_t in_height, float* output, uint32_t out_width, uint32_t out_height, bool mask_only );
bool loadClassColors( const char* filename );
bool loadClassLabels( const char* filename );
std::vector<std::string> mClassLabels;
std::string mClassPath;
float* mClassColors[2]; /**< array of overlay colors in shared CPU/GPU memory */
uint8_t* mClassMap[2]; /**< runtime buffer for the argmax-classified class index of each tile */
float* mLastInputImg; /**< last input image to be processed, stored for overlay */
uint32_t mLastInputWidth; /**< width in pixels of last input image to be processed */
uint32_t mLastInputHeight; /**< height in pixels of last input image to be processed */
NetworkType mNetworkType; /**< Pretrained built-in model type enumeration */
};
#endif