-
Notifications
You must be signed in to change notification settings - Fork 0
/
BGAOL.FOR
3950 lines (3601 loc) · 120 KB
/
BGAOL.FOR
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C Bravais General Analysis of Lattices (BGAOL)
C The Program formerly known as ITERATE
C
C Lawrence C Andrews[1] and Herbert J. Bernstein[2,*]
C
C [1] Micro Encoder Inc., 11533 NE 118th St, #200,
C Kirkland, WA 98034-7111 USA
C [2] Dowling College, 1300 William Floyd Parkway,
C Shirley, NY 11967 USA
C [*] To whom correspondence should be addressed.
C Email: [email protected]
C
C Copyright 1996, 2012, all rights reserved
C
C*******************************************************
C You may redistribute this program under the terms
C of the GPL.
C
C ALternatively you may redistribute this functions
C and subroutines of this program as an API under the
C terms of the LGPL
C*******************************************************
C*************************** GPL NOTICES ******************************
C* *
C* This program is free software; you can redistribute it and/or *
C* modify it under the terms of the GNU General Public License as *
C* published by the Free Software Foundation; either version 2 of *
C* (the License, or (at your option) any later version. *
C* *
C* This program is distributed in the hope that it will be useful, *
C* but WITHOUT ANY WARRANTY; without even the implied warranty of *
C* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
C* GNU General Public License for more details. *
C* *
C* You should have received a copy of the GNU General Public License *
C* along with this program; if not, write to the Free Software *
C* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA *
C* 02111-1307 USA *
C* *
C**********************************************************************/
C************************* LGPL NOTICES *******************************
C* *
C* This library is free software; you can redistribute it and/or *
C* modify it under the terms of the GNU Lesser General Public *
C* License as published by the Free Software Foundation; either *
C* version 2.1 of the License, or (at your option) any later version. *
C* *
C* This library is distributed in the hope that it will be useful, *
C* but WITHOUT ANY WARRANTY; without even the implied warranty of *
C* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
C* Lesser General Public License for more details. *
C* *
C* You should have received a copy of the GNU Lesser General Public *
C* License along with this library; if not, write to the Free *
C* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
C* MA 02110-1301 USA *
C* *
C**********************************************************************/
C
C In simple terms, what this program does is to find
C the cells which are "close" to the cell given, in
C order to help find the Bravais lattice of highest
C symmetry consistent with the cell.
C
C A central problem in the solution of every crystal
C structure is to determine the correct Bravais lattice
C of the crystal. The Bravais lattices as they are
C usually listed are:
C
C aP triclinic (anorthic) primitive
C mP monoclinic primitive
C mS monoclinic side-centered (C-centered)
C oP orthorhombic primitive
C oC orthorhombic side-centered (C-centered)
C oF orthorhombic face-centered
C oI orthorhombic body-centered
C hP hexagonal primitive
C hR hexagonal rhombohedrally-centered
C tP tetragonal primitive
C tI tetragonal body-centered
C cP cubic primitive
C cF cubic face-centered
C cI cubic body-centered
C
C Failure to find the highest correct symmetry has several
C consequences, the worst of which is that the structure
C may not be solved. The least of the consequences is that
C some successor to Richard Marsh may publish a paper that
C points out the error, corrects it, and finds a better
C solution to the structure. Many methods have been
C described for finding the correct Bravais lattice. A
C summary of the published methods was published in the
C paper that described the G6 formalism (which is used
C in the program on this web page).
C
C "Lattices and Reduced Cells as Points in 6-Space and
C Selection of Bravais Lattice Type by Projections."
C Lawrence C. Andrews and Herbert J. Bernstein, Acta
C Crystallographica, A44, 1009-1018 (1988).
C
C The program on BGAOL implements a search in G6 for the
C various Bravais lattices that the user's cell may fit.
C For each lattice type, the best metric match is reported.
C If the higher symmetry type is actually correct, then
C that is likely to be the best cell from which to start
C further refinement. However, the possibility exists
C that one of the rejected cells (which did not match as
C well) was actually the correct one to use. The reason
C for this ambiguity is experimental error and its
C propagation in the transformations of the lattices
C in the program. Fortunately, the rejected cells are
C usually quite similar to the accepted one.
C
C A note on standard deviations: First, even in the best
C of circumstances, standard deviations of unit cell
C dimensions from 4-circle diffractometer data are always
C underestimated (by at least a factor of 2). In addition,
C the points chosen for the determination are often not
C well distributed (for example all in the first octant
C of orthorhombic lattices). These less than optimal
C choices cause substantial systematic error. The
C experimental errors are amplified in the mathematical
C conversions between various lattices that any lattice
C search program must perform. It is not a rare occurrence
C for angles to be incorrect by 0.5 degrees in initial
C unit cell determinations.
C
C Note: Even in most well determined unit cells, the actual
C errors in the edge lengths are 0.2 to 0.5 parts per
C thousand. (Note that reproducibility of the measurements
C is substantially better, leading to the illusion that
C diffractometers produce excellent unit cell parameters).
C Use of standard deviations that are too small is a
C common reason for failure of Bravais lattice searches.
C For small molecules, 0.1 Angstroms is a reasonable error
C for the edge lengths, for proteins, 0.4 to 0.5 (or even
C more for preliminary measurements). Accurate unit cell
C parameters must by determined by a number of more complex
C methods and must include extrapolation to remove systematic
C effects. For an excellent summary, see "Xray Structure
C Determination", G.H.Stout and L.H.Jensen, Wiley, 1989.
C
C Note on the name BGAOL -- gaols have lots of cells
C
include "MKREFL.FOR"
include "near6.for"
include "E3TOG6.FOR"
include "MKGAOL.FOR"
include "NEAR.FOR"
C**********************************************************************C
PROGRAM RED
implicit none
integer iunit0,iunit1,iunit2,iunit3,iunit10
common /files/ iunit0,iunit1,iunit2,iunit3,iunit10
INTEGER MAXPRJ
PARAMETER (MAXPRJ=42)
INTEGER ITDESG(MAXPRJ)
INTEGER IORD(MAXPRJ)
LOGICAL REDUCED(MAXPRJ),NEARREDUCED(MAXPRJ)
LOGICAL AMRED, AMNEARRED
CHARACTER *2 CHRLAT(MAXPRJ)
real*8 PJNORM(MAXPRJ)
INTEGER PRJ(36,MAXPRJ)
real*8 P(36),AP(36)
real*8 CV(6),CE(6),G(6),GE(6),TG(6),AG(6),COUT(6)
real*8 TGRED(6)
integer TGMRED(36)
real*8 VRED(6,MAXPRJ)
real*8 VOUT(6,MAXPRJ)
real*8 MPRIM(36)
INTEGER MRED(36),IUM(36)
real*8 M3RED(3,3)
real*8 GOUT(6),GRED(6),CRED(6)
real*8 NCDIST
LOGICAL INPCEL
LOGICAL EMBDIST, COMBMODE, NCBMODE, HTMLOUT, QUITFLG
CHARACTER*1 MODEC
CHARACTER*19 HTMLSTR
CHARACTER*4 HTMLEND
INTEGER LHTMLSTR, LHTMLEND
integer modef
EXTERNAL INPCEL
CHARACTER LATSYM
integer nvmax, mxtree
integer iv, nv
real*8 band
integer bandcount
integer DegreesofFreedom
logical DEBUG, DEBUGD
real*8 dbest, dcurr, dtemp, dof
PARAMETER (NVMAX=20000)
PARAMETER (MXTREE=11*NVMAX)
real*8 TREE(MXTREE)
real*8 V(6,NVMAX), VDIST(NVMAX)
real*8 VBEST(6),AVBEST(6)
real*8 NewCell(6,MAXPRJ)
real*8 CenteredCell(6,MAXPRJ)
integer IVB(NVMAX)
real*8 XDOTVN,DISTVN
EXTERNAL XDOTVN
INTEGER NPROJ,I,J,JJ
real*8 RATIO,SIZE,ERRSIZ
real*8 matrix3(9)
integer imat
REAL*8 BEST(42)
real*8 distances2Boundaries(21)
character*7 bnames(21)
integer ib
character*4 sprefix
CHARACTER *100 TITLE
LOGICAL NEARRED
common/xdebug/xdebug
logical xdebug
data xdebug/.false./
DATA bnames/ '1','2','3','4','5','6','7','8','9',
* 'A','B','C','D','E','F',
* '678X','9ABCDEX','FX','67','9A','CD'/
C----------------------------------------------------------------------C
iunit0 = 0
iunit1 = 1
iunit2 = 2
iunit3 = 3
iunit10 = 10
EMBDIST = .false.
COMBMODE = .false.
HTMLOUT = .false.
NCBMODE = .true.
QUITFLG = .false.
DEBUG = .true.
DEBUGD = .false.
call IUNTMN(6,IUM)
write(*,*) ("*+",i=1,35)
CALL BLDPRJ (MAXPRJ,NPROJ,ITDESG,CHRLAT,PJNORM,PRJ,'BLDPRJ')
write (*,*) ' nproj = ',nproj
100 continue
IF (QUITFLG) go to 9000
IF ( .NOT. INPCEL(LATSYM,MODEC,TITLE,CV,CE,
* EMBDIST, COMBMODE, NCBMODE, HTMLOUT, QUITFLG)) THEN
GO TO 9000
ELSEIF ( LATSYM .eq. "Q" ) THEN
GO TO 9000
ELSE
CALL CTOG6(CV,CE,G,GE,SIZE,ERRSIZ,RATIO,'CTOG6 ')
if(htmlout) then
write (*,"(a,$)")
* "</pre><table border=2><tr><td valign=top><pre>"
write (*,"(a,$)")
* '<span class="inner-pre" style="font-size: 11px">'
endif
WRITE(*,*) " Input lattice type ", LATSYM
if(htmlout) then
write (*,*) ' <a href="#results">GO TO RESULTS</a>'
write (*,"(a,$)") "</span></pre></td><td valign=top><pre>"
write (*,"(a,$)")
* '<span class="inner-pre" style="font-size: 11px">'
endif
WRITE (*,'('' INPUT CELL AND ERRORS '')')
CALL WRCELL(CV,CE,'WRCELL')
if(htmlout) then
write (*,"(a,$)") "</span></pre></td><td valign=top><pre>"
write (*,"(a,$)")
* '<span class="inner-pre" style="font-size: 11px">'
else
write (*,*)
endif
WRITE (*,*) ' INPUT VECTOR AND ERRORS'
CALL WRVEC6(G,GE,'WRVEC6')
if(htmlout) then
write (*,"(a,$)")
* "</span></pre></td></tr><tr><td valign=top colspan=3><pre>"
write (*,"(a,$)")
* '<span class="inner-pre" style="font-size: 11px">'
else
write (*,*)
endif
CALL WRSIZE (SIZE,ERRSIZ,RATIO,'WRSIZE')
CALL MKPRIM (LATSYM,G,MPRIM,GOUT,'MKPRIM')
C WRITE (*,*) ' AFTER MKPRIM'
CALL dg6toe3(MPRIM,M3RED)
IF (DEBUGD) THEN
WRITE (*,*) "g6 Centering Matrix:"
WRITE (*,'(12x,6f10.3)') MPRIM
ENDIF
if(htmlout) then
write (*,"(a,$)")
* "</span></pre></td></tr><tr><td valign=top colspan=3><pre>"
write (*,*)
* '<span class="inner-pre" style="font-size: 11px">'
else
write (*,*)
endif
WRITE (*,*) "E3 Centering Matrix:"
WRITE (*,'(12x,3f10.3)') ((M3RED(I,J),i=1,3),j=1,3)
if(htmlout) then
write (*,"(a,$)")
* "</span></pre></td></tr><tr><td valign=top colspan=3><pre>"
write (*,"(a,$)")
* '<span class="inner-pre" style="font-size: 11px">'
else
write (*,*)
endif
CALL CHKVEC(GOUT)
CALL IUNTMN(6,MRED)
CALL REDUCE (GOUT,MRED,GRED,1.D-6,'REDUCE')
CALL CHKVEC(GRED)
CALL G6TOC (GRED,CRED,'G6TOC ')
SIZE = DSQRT(XDOTVN(6,GRED,GRED))
ERRSIZ = RATIO * SIZE
if (.not.htmlout) then
WRITE (*,*)
WRITE (*,*) TITLE
WRITE (*,'('' REDUCED CELL '')')
endif
call wlabv6(' Red. Cell ',CRED)
call wlabv6(' Red. Vector ',GRED)
if (DEBUGD) THEN
WRITE (*,*) "G6 Reduction Matrix:"
WRITE (*,'(12x,6I6)') MRED
ENDIF
CALL g6toe3(MRED,M3RED)
WRITE (*,*) "E3 Reduction Matrix:"
WRITE (*,'(12x,3f10.3)') ((M3RED(I,J),i=1,3),j=1,3)
if(htmlout) then
write (*,*)
* "</pre></td></tr><tr></table><pre>"
endif
do modef = 1,2
IF ((MODEC.EQ." ".OR.MODEC.EQ.'I').AND.
* COMBMODE .AND. modef.eq.1) THEN
WRITE(*,*) "UNCONSTRAINED ITERATIVE MODE SEARCH"
CALL MKREFL (RATIO,MXTREE,TREE,NVMAX,V,NV,GRED,'MKREFL')
ELSEIF ((MODEC.EQ." ".OR.MODEC.EQ.'B').AND.
* NCBMODE .AND. modef.eq.2)
* THEN
WRITE(*,*) "NIGGLI CONE BOUNDARY-CONSTRAINED SEARCH"
CALL MKGAOL (MXTREE,TREE,NVMAX,V,NV,GRED,GE,RATIO,
* VDIST,IVB,'MKGAOL')
ELSE
GO TO 6000
ENDIF
IF (HTMLOUT) WRITE(*,*) "</pre>",
* '<div style='//
* '"width:600px;height:160px;overflow:'//
* 'scroll;border:2px solid #0000FF;">',
* "<pre>"
DO 4000 I=1,NPROJ
BEST(I) = -19191
REDUCED(I) = .false.
NEARREDUCED(I) = .false.
DBEST = 1.0E20
DO 1000 J=1,36
P(J) = PRJ(J,I)/PJNORM(I)
1000 AP(J) = -P(J)
DO 2000 J=1,36,7
AP(J) = 1.0D0 + AP(J)
2000 CONTINUE
DO 3000 IV=1,NV
AMRED = NEARRED(V(1,IV),1.0D-6,"NEARRED")
AMNEARRED = NEARRED(V(1,IV),
* MIN(.5D0,ERRSIZ/2.D0),"NEARRED")
if (AMRED) AMNEARRED = .true.
CALL RMV6 (V(1,IV),AP,AG)
CALL RMV6 (V(1,IV),P,TG)
DCURR = XDOTVN(6,AG,AG)
IF (modef.eq.2)
* DCURR = DCURR+VDIST(IV)*VDIST(IV)
if (Modef.eq.2) THEN
C write(*,*)"TG",TG
C write(*,*)"AG",AG
C write(*,*)"DCURR, VDIST",IV,DCURR,VDIST(IV)
endif
IF ( ((DCURR .LT. DBEST-1.D-10)
2 .OR. ((.NOT.REDUCED(I)).AND.AMRED)
3 .OR. ((.NOT.NEARREDUCED(I)).AND.AMNEARRED))
4 .AND. SQRT(DCURR).LE.ERRSIZ*3.5D0
5 .AND. (TG(1).GT.1.0D0 .AND. TG(2).GT.1.0D0
6 .AND. TG(3).GT.1.0D0
7 .AND. (
* ((TG(4).le.1.d-6*sqrt(TG(2)*TG(3)))
* .and.(TG(5).le.1.d-6*sqrt(TG(1)*TG(3)))
* .and.(TG(6).le.1.d-6*sqrt(TG(1)*TG(2)))
9 .AND. ITDESG(I).LT.0)
A .OR.
* ((TG(4).ge.-1.d-6*sqrt(TG(2)*TG(3)))
* .and.(TG(5).ge.-1.d-6*sqrt(TG(1)*TG(3)))
* .and.(TG(6).ge.-1.d-6*sqrt(TG(1)*TG(2)))
B .AND. ITDESG(I).GT.0)))) THEN
DTEMP = DISTVN(6,GRED,TG)**2
DBEST = XDOTVN(6,AG,AG)
IF (modef.eq.2)
* DBEST = NCDIST(GRED,TG)**2
IF (DTEMP.LT.DBEST) DBEST=DTEMP
IF (EMBDIST) THEN
CALL REDUCE (TG,TGMRED,TGRED,0.D0,'REDUCE')
IF (ABS(NCDIST(GRED,TGRED)-sqrt(dbest))
* .gt.1.d-8.and.modef.eq.2) THEN
write(*,'(a,6f10.3)') "GRED ",GRED
write(*,'(a,6f10.3)') "TGRED ",TGRED
write(*,*) "NCDIST, old dist, DELTA",
* NCDIST(GRED,TGRED), sqrt(dbest),
* -NCDIST(GRED,TGRED)+sqrt(dbest)
write(*,*)
ENDIF
ENDIF
CALL CPYVN(6,TG,VBEST)
CALL CPYVN(6,AG,AVBEST)
CALL CPYVN(6,V(1,IV),VRED(1,I))
REDUCED(I) = AMRED
NEARREDUCED(I) = AMNEARRED
IF (.NOT.NEARREDUCED(I).AND.DEBUGD) THEN
WRITE (*,*) "NR G6: ", VRED(1,I),
* VRED(2,I),VRED(3,I),VRED(4,I),
* VRED(5,I),VRED(6,I)
ENDIF
ENDIF
3000 CONTINUE
IF (DSQRT(DBEST) .GT. ERRSIZ*3.5D0)
* GO TO 4000
IF (DSQRT(DBEST) .LE. 999.0) THEN
sprefix = " NON"
if (NEARREDUCED(I)) sprefix = "NEAR"
if (REDUCED(I)) sprefix = " "
BEST(I) = DSQRT(DBEST)
HTMLSTR = " "
LHTMLSTR = 1
IF (HTMLOUT) THEN
WRITE(HTMLSTR,'(a,I3,a)') "<a name=IT_",
* IABS(ITDESG(I))+100*modef,"></a>"
LHTMLSTR = 19
ENDIF
WRITE (*,*)
IF (ITDESG(I).GT.0) THEN
WRITE (*,'(a,I3,2X,''IT('',I2'')'',
2 4H +++,1X,A4,A,2X,A2,2X,A100)')
3 HTMLSTR(1:LHTMLSTR),I,IABS(ITDESG(I)),
4 sprefix,"REDUCED ",CHRLAT(I), TITLE
ELSE
WRITE (*,'(a,I3,2X,''IT('',I2'')'',
2 4H ---,1X,A4,A,2X,A2,2X,A100)')
3 HTMLSTR(1:LHTMLSTR),I,IABS(ITDESG(I)),
4 sprefix,"REDUCED ",CHRLAT(I), TITLE
ENDIF
WRITE (*,'(6X,a,F5.1,1X,a,F5.2)')
* "G6 Distance: ",
2 BEST(I), " G6 Distance/Error: ",
3 BEST(I)/ERRSIZ
call WLABV6(" V=",VBEST)
CALL G6TOC (VBEST,COUT,'G6TOC ')
call WLABV6(" cell",COUT)
call cpyvn(6,TG,VOUT(1,I))
WRITE (*,*)
call UncenterVector( VBEST, ITDESG(I),
* NewCell(1,I) )
call CalculateCenteredCell( NewCell(1,I),
* CenteredCell(1,I) )
call WLABV6(' G6 cell',NewCell(1,I))
call WLABV6(' E3 cell',CenteredCell(1,I))
call Primitive2CenteredMatrix( IABS(ITDESG(I)), matrix3 )
dof = DBLE(DegreesofFreedom(ITDESG(I)))
WRITE (*,"(a,1h[,3i3,1h/,3i3,1h/,3i3,1h])")
* " Primitive to Centered Matrix: ",
* (int(matrix3(imat)),imat=1,9)
WRITE (*,"(2(1x,a,f8.2,4x,a,f8.2/))")
* " G6 DF-weighted distance: ",
* DSQRT(dof)*BEST(I),
* " E3 distance (Angstroms): ",
* DSQRT(dof*BEST(I)/6.)/2.,
* " G6 angular Z-score: ",
* datan2(DSQRT(dof)*BEST(I),
* dsqrt(max(0.D0,
* dabs(size**2-dof*BEST(I)**2))))
* /datan2(ERRSIZ,
* dsqrt(max(0.D0,
* dabs(size**2-ERRSIZ**2))))
write(*,*)
ELSE
BEST(I) = -19191
REDUCED(I) = .false.
NEARREDUCED(I) = .false.
ENDIF
IF (DEBUGD) THEN
WRITE (*,'(1X,6F10.6)') P
WRITE (*,*)
call BoundaryDistances( 1, VBEST,
2 distances2Boundaries, ERRSIZ, DEBUG )
do 3500 ib=1,21
write(*,*)
2 " returned boundary ",bnames(ib),
3 distances2Boundaries(ib)
3500 continue
ENDIF
4000 CONTINUE
IF (HTMLOUT) WRITE(*,*) "<a name=results></pre></div><pre>"
call SortDists(NPROJ, BEST, ITDESG, IORD, ERRSIZ)
if (modef.eq.1)
* WRITE(*,*) "UNCONSTRAINED ITERATIVE MODE SEARCH"
if (modef.eq.2)
* WRITE(*,*) "NIGGLI CONE BOUNDARY-CONSTRAINED SEARCH"
write (*,"(a,55x,a)")
* " Final List Lat Dist Cell",
* "DF dist E3 dist Z-score"
DO iv = 1,3
IF (HTMLOUT) THEN
WRITE(*,*) "<hr />"
ELSE
WRITE(*, "(1X,A)")"-----------------------------"
ENDIF
if (iv.eq.1) write(*,*)"NIGGLI REDUCED"
if (iv.eq.2) write(*,*)"NEAR NIGGLI REDUCED"
if (iv.eq.3) write(*,*)"NON NIGGLI REDUCED"
band = ERRSIZ/2
bandcount = 0
DO 5000 i=1,NPROJ
IF ( BEST(IORD(I)) .ge. 0
* .and. ((REDUCED(IORD(I)).and.iv.eq.1)
* .or. ((.NOT.REDUCED(IORD(I)))
* .and.NEARREDUCED(IORD(I))
* .and.iv.eq.2)
* .or. ((.not.NEARREDUCED(IORD(I)))
* .and.iv.eq.3)))THEN
IF ( BEST(IORD(I)) .gt. band) THEN
IF (bandcount .gt. 0) THEN
IF (HTMLOUT) THEN
WRITE(*,*) "<hr />"
ELSE
WRITE(*, "(1X,A)")"-----------------------------"
ENDIF
ENDIF
band = ERRSIZ/2.D0
* *dble(INT(2.0*BEST(IORD(I))/ERRSIZ)+1)
bandcount = 0
if (band .gt. 3.25D0*ERRSIZ) go to 6000
ENDIF
sprefix = " NON"
if (NEARREDUCED(IORD(I))) sprefix = "NEAR"
if (REDUCED(IORD(I))) sprefix = " "
HTMLSTR = " "
LHTMLSTR = 1
HTMLEND = " "
LHTMLEND = 1
if (HTMLOUT) THEN
write(HTMLSTR,'(a,I3,a)')"<a href=#IT_",
* IABS(ITDESG(IORD(i)))+100*modef,">"
LHTMLSTR = 16
HTMLEND = "</a>"
LHTMLEND = 4
endif
dof = DBLE(DegreesofFreedom(ITDESG(IORD(I))))
if (BEST(IORD(I)).GT.2499.9989D0 .OR.
* CenteredCell(1,IORD(I)).GT.99999.9989D0 .OR.
* CenteredCell(2,IORD(I)).GT.99999.9989D0 .OR.
* CenteredCell(3,IORD(I)).GT.99999.9989D0)
* THEN
if (ITDESG(IORD(I)).GT.0) then
WRITE(*, "(a,3HIT(, I3, 1H),a,4H +++,1X,A4,
* 8HREDUCED ,A2, 1x, G8.3,2x,3(1x,G9.3),
* 3F9.3,2x,3F9.3)")
* HTMLSTR(1:LHTMLSTR), IABS(ITDESG(IORD(I))),
* HTMLEND(1:LHTMLEND), sprefix,
* CHRLAT(IORD(I)), BEST(IORD(I)),
* (CenteredCell(JJ,IORD(I)),JJ=1,6),
* DSQRT(dof)*BEST(IORD(I)),
* DSQRT(dof*BEST(IORD(I))/6.)/2.,
* datan2(dsqrt(dof)*BEST(IORD(I)),
* dsqrt(max(0.d0,
* size**2-dof*BEST(IORD(I))**2)))
* /datan2(ERRSIZ,
* dsqrt(max(0.d0,
* size**2-ERRSIZ**2)))
else
WRITE(*, "(a,3HIT(, I3, 1H),a,4H ---,1X,A4,
* 8HREDUCED ,A2, 1x, G8.3,2x,3(1x,G9.3),
* 3F9.3,2x,3F9.3)")
* HTMLSTR(1:LHTMLSTR), IABS(ITDESG(IORD(I))),
* HTMLEND(1:LHTMLEND), sprefix,
* CHRLAT(IORD(I)), BEST(IORD(I)),
* (CenteredCell(JJ,IORD(I)),JJ=1,6),
* DSQRT(dof)*BEST(IORD(I)),
* DSQRT(dof*BEST(IORD(I))/6.)/2.,
* datan2(dsqrt(dof)*BEST(IORD(I)),
* dsqrt(max(0.d0,
* size**2-dof*BEST(IORD(I))**2)))
* /datan2(ERRSIZ,
* dsqrt(max(0.d0,
* size**2-ERRSIZ**2)))
endif
ELSE
if (ITDESG(IORD(I)).GT.0) then
WRITE(*, "(a,3HIT(, I3, 1H),a,4H +++,1X,A4,
* 8HREDUCED ,A2, 1x, F8.3,2x,3(1x,F9.3),
* 3F9.3,2x,3F9.3)")
* HTMLSTR(1:LHTMLSTR), IABS(ITDESG(IORD(I))),
* HTMLEND(1:LHTMLEND), sprefix,
* CHRLAT(IORD(I)), BEST(IORD(I)),
* (CenteredCell(JJ,IORD(I)),JJ=1,6),
* DSQRT(dof)*BEST(IORD(I)),
* DSQRT(dof*BEST(IORD(I))/6.)/2.,
* datan2(dsqrt(dof)*BEST(IORD(I)),
* dsqrt(max(0.d0,
* size**2-dof*BEST(IORD(I))**2)))
* /datan2(ERRSIZ,
* dsqrt(max(0.d0,
* size**2-ERRSIZ**2)))
else
WRITE(*, "(a,3HIT(, I3, 1H),a,4H ---,1X,A4,
* 8HREDUCED ,A2, 1x, F8.3,2x,3(1x,F9.3),
* 3F9.3,2x,3F9.3)")
* HTMLSTR(1:LHTMLSTR), IABS(ITDESG(IORD(I))),
* HTMLEND(1:LHTMLEND), sprefix,
* CHRLAT(IORD(I)), BEST(IORD(I)),
* (CenteredCell(JJ,IORD(I)),JJ=1,6),
* DSQRT(dof)*BEST(IORD(I)),
* DSQRT(dof*BEST(IORD(I))/6.)/2.,
* datan2(dsqrt(dof)*BEST(IORD(I)),
* dsqrt(max(0.d0,
* size**2-dof*BEST(IORD(I))**2)))
* /datan2(ERRSIZ,
* dsqrt(max(0.d0,
* size**2-ERRSIZ**2)))
endif
endif
bandcount = bandcount+1
ENDIF
5000 CONTINUE
enddo
IF (HTMLOUT) THEN
WRITE(*,*) "<hr />"
ELSE
WRITE(*, "(1X,A)")"-----------------------------"
ENDIF
6000 CONTINUE
enddo
ENDIF
go to 100
9000 continue
END
C**********************************************************************C
integer function DegreesofFreedom(ITDESG)
implicit none
integer ITDESG, idf(44)
data idf/
* 1,2,1,2,1,2,2,3,2,4,
* 2,2,3,4,2,3,4,2,3,4,
* 2,2,3,2,4,3,4,4,4,4,
* 6,3,4,4,4,3,4,3,4,3,
* 4,3,4,6/
DegreesofFreedom = idf(max(1,min(iabs(ITDESG),44)))
return
end
C**********************************************************************C
subroutine CalculateCenteredCell( NewCell, CenteredCell )
real*8 NewCell(6), CenteredCell(6)
CenteredCell(1) = DSQRT( NewCell(1) )
CenteredCell(2) = DSQRT( NewCell(2) )
CenteredCell(3) = DSQRT( NewCell(3) )
CenteredCell(4) =
* DACOS(0.5*NewCell(4)/CenteredCell(2)/CenteredCell(3)) *
* 180.0D0/DATAN(1.0D0)/4.0D0
CenteredCell(5) =
* DACOS(0.5*NewCell(5)/CenteredCell(1)/CenteredCell(3)) *
* 180.0D0/DATAN(1.0D0)/4.0D0
CenteredCell(6) =
* DACOS(0.5*NewCell(6)/CenteredCell(1)/CenteredCell(2)) *
* 180.0D0/DATAN(1.0D0)/4.0D0
END
C**********************************************************************C
C UncenterVector
C
C For each of the "IT" (International Tables) cases, convert
C a primitive G6 vector to the corresponding centered G6 vector
C**********************************************************************C
subroutine UncenterVector( VBEST, ITDESG, NewCell )
implicit none
real*8 VBEST(6), NewCell(6)
integer ITDESG
integer iCellType
real*8 matrices(36,44)
integer i
data (matrices(i,01),i=1,36)/
* 1.00, 1.00, 1.00, -1.00, 1.00, -1.00,
* 1.00, 1.00, 1.00, -1.00, -1.00, 1.00,
* 1.00, 1.00, 1.00, 1.00, -1.00, -1.00,
* -2.00, 2.00, -2.00, 0.00, 2.00, 0.00,
* -2.00, -2.00, 2.00, 0.00, 0.00, 2.00,
* 2.00, -2.00, -2.00, 2.00, 0.00, 0.00
* /
data (matrices(i,02),i=1,36)/
* 1.00, 1.00, 0.00, -0.00, 0.00, -1.00,
* 1.00, 0.00, 1.00, 0.00, -1.00, -0.00,
* 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
* 2.00, -0.00, -2.00, -1.00, 0.00, 1.00,
* -2.00, 2.00, -0.00, 1.00, -1.00, 0.00,
* -2.00, -0.00, 0.00, -1.00, 1.00, 1.00
* /
data (matrices(i,03),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,04),i=1,36)/
* 1.00, 1.00, 0.00, -0.00, 0.00, -1.00,
* 1.00, 0.00, 1.00, 0.00, -1.00, -0.00,
* 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
* 2.00, -0.00, -2.00, -1.00, 0.00, 1.00,
* -2.00, 2.00, -0.00, 1.00, -1.00, 0.00,
* -2.00, -0.00, 0.00, -1.00, 1.00, 1.00
* /
data (matrices(i,05),i=1,36)/
* 1.00, 0.00, 1.00, 0.00, 1.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, 2.00, 0.00, 1.00, 1.00, 1.00,
* 0.00, 0.00, 2.00, 1.00, 1.00, 1.00,
* 2.00, 0.00, 0.00, 1.00, 1.00, 1.00
* /
data (matrices(i,06),i=1,36)/
* 1.00, 0.00, 1.00, 0.00, 1.00, 0.00,
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 2.00, 0.00, 1.00, 1.00, 1.00,
* 2.00, 0.00, 0.00, 1.00, 1.00, 1.00,
* 0.00, 0.00, 2.00, 1.00, 1.00, 1.00
* /
data (matrices(i,07),i=1,36)/
* 1.00, 0.00, 1.00, 0.00, 1.00, 0.00,
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 2.00, 0.00, 1.00, 1.00, 1.00,
* 2.00, 0.00, 0.00, 1.00, 1.00, 1.00,
* 0.00, 0.00, 2.00, 1.00, 1.00, 1.00
* /
data (matrices(i,08),i=1,36)/
* 1.00, 0.00, 1.00, 0.00, 1.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, 2.00, 0.00, 1.00, 1.00, 1.00,
* 0.00, 0.00, 2.00, 1.00, 1.00, 1.00,
* 2.00, 0.00, 0.00, 1.00, 1.00, 1.00
* /
data (matrices(i,09),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, -0.00, -1.00,
* 1.00, 1.00, 9.00, -3.00, -3.00, 1.00,
* 2.00, -2.00, 0.00, 3.00, -3.00, 0.00,
* -2.00, -0.00, 0.00, 0.00, 3.00, -1.00,
* -2.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,10),i=1,36)/
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 1.00, 1.00, 0.00, -0.00, 0.00, -1.00,
* 0.00, 0.00, 1.00, -0.00, -0.00, 0.00,
* 0.00, -0.00, -0.00, 1.00, -1.00, 0.00,
* 0.00, 0.00, -0.00, -1.00, -1.00, 0.00,
* 2.00, -2.00, 0.00, 0.00, 0.00, 0.00
* /
data (matrices(i,11),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,12),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,13),i=1,36)/
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 1.00, 1.00, 0.00, 0.00, -0.00, -1.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* -0.00, 0.00, 0.00, 1.00, -1.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 1.00, 0.00,
* -2.00, 2.00, 0.00, 0.00, 0.00, 0.00
* /
data (matrices(i,14),i=1,36)/
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 1.00, 1.00, 0.00, 0.00, -0.00, -1.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* -0.00, 0.00, 0.00, 1.00, -1.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 1.00, 0.00,
* -2.00, 2.00, 0.00, 0.00, 0.00, 0.00
* /
data (matrices(i,15),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 1.00, 1.00, 4.00, 2.00, 2.00, 1.00,
* 0.00, 2.00, 0.00, 2.00, 0.00, 1.00,
* 2.00, 0.00, 0.00, 0.00, 2.00, 1.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,16),i=1,36)/
* 1.00, 1.00, 0.00, -0.00, 0.00, -1.00,
* 1.00, 1.00, 4.00, 2.00, 2.00, 1.00,
* 1.00, 1.00, 0.00, -0.00, -0.00, 1.00,
* -2.00, -2.00, 0.00, -2.00, -2.00, -2.00,
* -2.00, 2.00, 0.00, -0.00, 0.00, 0.00,
* 2.00, -2.00, 0.00, -2.00, 2.00, 0.00
* /
data (matrices(i,17),i=1,36)/
* 1.00, 0.00, 1.00, 0.00, 1.00, 0.00,
* 1.00, 1.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, -2.00, 0.00, -1.00, -1.00, -1.00,
* 0.00, 0.00, -2.00, -1.00, -1.00, -1.00,
* 2.00, 0.00, 0.00, 1.00, 1.00, 1.00
* /
data (matrices(i,18),i=1,36)/
* 0.00, 1.00, 1.00, -1.00, 0.00, -0.00,
* 1.00, 1.00, 1.00, 1.00, -1.00, -1.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 2.00, -0.00, -0.00, -0.00, -1.00, -1.00,
* 0.00, -0.00, 0.00, 0.00, 1.00, -1.00,
* 0.00, 2.00, -2.00, 0.00, 1.00, -1.00
* /
data (matrices(i,19),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, -0.00, -0.00,
* 1.00, 1.00, 1.00, 1.00, -1.00, -1.00,
* 0.00, 1.00, 1.00, -1.00, 0.00, -0.00,
* -0.00, -2.00, 2.00, 0.00, -1.00, 1.00,
* -0.00, -0.00, 0.00, 0.00, -1.00, 1.00,
* 2.00, 0.00, 0.00, 0.00, -1.00, -1.00
* /
data (matrices(i,20),i=1,36)/
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, 1.00, 1.00, -1.00, -0.00, 0.00,
* 1.00, 0.00, 0.00, 0.00, -0.00, -0.00,
* -0.00, 0.00, -0.00, 0.00, 1.00, -1.00,
* -0.00, 0.00, 0.00, 0.00, -1.00, -1.00,
* 0.00, 2.00, -2.00, 0.00, 0.00, 0.00
* /
data (matrices(i,21),i=1,36)/
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00
* /
data (matrices(i,22),i=1,36)/
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00
* /
data (matrices(i,23),i=1,36)/
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, 1.00, 1.00, -1.00, 0.00, -0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, -0.00, 0.00, 0.00, 1.00, -1.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 1.00,
* 0.00, -2.00, 2.00, 0.00, 0.00, 0.00
* /
data (matrices(i,24),i=1,36)/
* 1.00, 4.00, 1.00, 2.00, 1.00, 2.00,
* 0.00, 1.00, 1.00, -1.00, 0.00, -0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, -0.00, 0.00, 0.00, 1.00, -1.00,
* 2.00, 0.00, 0.00, 0.00, 1.00, 2.00,
* 0.00, -4.00, 2.00, 1.00, 1.00, -1.00
* /
data (matrices(i,25),i=1,36)/
* 0.00, 1.00, 1.00, 1.00, 0.00, 0.00,
* 0.00, 1.00, 1.00, -1.00, 0.00, -0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, -0.00, 0.00, 0.00, 1.00, -1.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 1.00,
* 0.00, -2.00, 2.00, 0.00, 0.00, 0.00
* /
data (matrices(i,26),i=1,36)/
* 1.00, 4.00, 0.00, 0.00, -0.00, -2.00,
* 1.00, 0.00, 4.00, 0.00, -2.00, -0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* -2.00, 0.00, 0.00, 0.00, 2.00, 0.00,
* -2.00, 0.00, 0.00, 0.00, 0.00, 2.00,
* 2.00, 0.00, 0.00, 4.00, -2.00, -2.00
* /
data (matrices(i,27),i=1,36)/
* 0.00, 1.00, 1.00, -1.00, -0.00, 0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 1.00, 1.00, 1.00, 1.00, -1.00, -1.00,
* -2.00, 0.00, 0.00, 0.00, 1.00, 1.00,
* -0.00, 2.00, -2.00, 0.00, 1.00, -1.00,
* 0.00, 0.00, -0.00, 0.00, -1.00, 1.00
* /
data (matrices(i,28),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, -0.00, -0.00,
* 1.00, 0.00, 4.00, 0.00, -2.00, -0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* -0.00, 0.00, 0.00, 2.00, 0.00, -1.00,
* -0.00, 0.00, 0.00, 0.00, 0.00, -1.00,
* 2.00, 0.00, 0.00, 0.00, -2.00, -0.00
* /
data (matrices(i,29),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, -0.00, -0.00,
* 1.00, 4.00, 0.00, 0.00, -0.00, -2.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* -0.00, 0.00, 0.00, 2.00, -1.00, 0.00,
* -0.00, 0.00, 0.00, 0.00, -1.00, 0.00,
* 2.00, 0.00, 0.00, 0.00, -0.00, -2.00
* /
data (matrices(i,30),i=1,36)/
* 0.00, 1.00, 0.00, -0.00, 0.00, -0.00,
* 0.00, 1.00, 4.00, -2.00, 0.00, -0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, -0.00, 0.00, 0.00, 2.00, -1.00,
* 0.00, -0.00, 0.00, 0.00, 0.00, -1.00,
* 0.00, 2.00, 0.00, -2.00, 0.00, -0.00
* /
data (matrices(i,31),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,32),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,33),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00
* /
data (matrices(i,34),i=1,36)/
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 0.00, 1.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00
* /
data (matrices(i,35),i=1,36)/
* 0.00, 1.00, 0.00, 0.00, 0.00, 0.00,
* 1.00, 0.00, 0.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 1.00, 0.00, 0.00, 0.00,
* 0.00, 0.00, 0.00, 0.00, 1.00, 0.00,
* 0.00, 0.00, 0.00, 1.00, 0.00, 0.00,