-
Notifications
You must be signed in to change notification settings - Fork 0
/
Helpers
1931 lines (1931 loc) · 94.1 KB
/
Helpers
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [],
"source": [
"# Initialize Otter\n",
"import otter\n",
"grader = otter.Notebook(\"proj2a.ipynb\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Project 2A: Spam/Ham Classification\n",
"\n",
"## Feature Engineering, Logistic Regression\n",
"## Due Date: Thursday, August 4, 11:59PM PDT\n",
"\n",
"**Collaboration Policy**\n",
"\n",
"Data science is a collaborative activity. While you may talk with others about\n",
"the homework, we ask that you **write your solutions individually**. If you do\n",
"discuss the assignments with others please **include their names** at the top\n",
"of your notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Collaborators**: *list collaborators here*"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "proj2",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"## This Assignment\n",
"You will use what you've learned in class to create a classifier that can distinguish spam (junk or commercial or bulk) emails from ham (non-spam) emails. In addition to providing some skeleton code to fill in, we will evaluate your work based on your model's accuracy and your written responses in this notebook.\n",
"\n",
"After this homework, you should feel comfortable with the following:\n",
"\n",
"- Feature engineering with text data\n",
"- Using `sklearn` libraries to process data and fit models\n",
"- Validating the performance of your model and minimizing overfitting\n",
"- Generating and analyzing precision-recall curves\n",
"\n",
"This first part of the project focuses on initial analysis. In the second part of this project (to be released next week), you will build your own spam/ham classifier.\n",
"\n",
"## Warning\n",
"This is a **real world** dataset – the emails you are trying to classify are actual spam and legitimate emails. As a result, some of the spam emails may be in poor taste or be considered inappropriate. We think the benefit of working with realistic data outweighs these innapropriate emails, and wanted to give a warning at the beginning of the homework so that you are made aware."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Note: you may need to restart the kernel to use updated packages.\n"
]
}
],
"source": [
"# Run this cell to suppress all FutureWarnings\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\", category=FutureWarning)\n",
"\n",
"# more readable exceptions\n",
"%pip install --quiet iwut\n",
"%load_ext iwut\n",
"%wut on"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Score Breakdown\n",
"Question | Points\n",
"--- | ---\n",
"1 | 2\n",
"2 | 3\n",
"3 | 3\n",
"4 | 2\n",
"5 | 2\n",
"6a | 1\n",
"6b | 1\n",
"6c | 2\n",
"6d | 2\n",
"6e | 1\n",
"6f | 3\n",
"Total | 22"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "p1",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<br/><br/>\n",
"<hr style=\"border: 5px solid #003262;\" />\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"# Part 1: Initial Analysis"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:41.341673Z",
"start_time": "2019-04-03T20:17:41.330307Z"
},
"nbgrader": {
"grade": false,
"grade_id": "imports",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"\n",
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"import seaborn as sns\n",
"sns.set(style = \"whitegrid\", \n",
" color_codes = True,\n",
" font_scale = 1.5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "loading",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"### Loading in the Data\n",
"\n",
"In email classification, our goal is to classify emails as spam or not spam (referred to as \"ham\") using features generated from the text in the email. \n",
"\n",
"The dataset is from [SpamAssassin](https://spamassassin.apache.org/old/publiccorpus/). It consists of email messages and their labels (0 for ham, 1 for spam). Your labeled training dataset contains 8348 labeled examples, and the unlabeled test set contains 1000 unlabeled examples.\n",
"\n",
"**Note:** The dataset is from 2004, so the contents of emails might be very different from those in 2022.\n",
"\n",
"Run the following cells to load the data into DataFrames.\n",
"\n",
"The `train` DataFrame contains labeled data that you will use to train your model. It contains four columns:\n",
"\n",
"1. `id`: An identifier for the training example\n",
"1. `subject`: The subject of the email\n",
"1. `email`: The text of the email\n",
"1. `spam`: 1 if the email is spam, 0 if the email is ham (not spam)\n",
"\n",
"The `test` DataFrame contains 1000 unlabeled emails. You will predict labels for these emails and submit your predictions to the autograder for evaluation."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import zipfile\n",
"with zipfile.ZipFile('spam_ham_data.zip') as item:\n",
" item.extractall()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>subject</th>\n",
" <th>email</th>\n",
" <th>spam</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>Subject: A&L Daily to be auctioned in bankrupt...</td>\n",
" <td>url: http://boingboing.net/#85534171\\n date: n...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>Subject: Wired: \"Stronger ties between ISPs an...</td>\n",
" <td>url: http://scriptingnews.userland.com/backiss...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>Subject: It's just too small ...</td>\n",
" <td><html>\\n <head>\\n </head>\\n <body>\\n <font siz...</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>Subject: liberal defnitions\\n</td>\n",
" <td>depends on how much over spending vs. how much...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>Subject: RE: [ILUG] Newbie seeks advice - Suse...</td>\n",
" <td>hehe sorry but if you hit caps lock twice the ...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id subject \\\n",
"0 0 Subject: A&L Daily to be auctioned in bankrupt... \n",
"1 1 Subject: Wired: \"Stronger ties between ISPs an... \n",
"2 2 Subject: It's just too small ... \n",
"3 3 Subject: liberal defnitions\\n \n",
"4 4 Subject: RE: [ILUG] Newbie seeks advice - Suse... \n",
"\n",
" email spam \n",
"0 url: http://boingboing.net/#85534171\\n date: n... 0 \n",
"1 url: http://scriptingnews.userland.com/backiss... 0 \n",
"2 <html>\\n <head>\\n </head>\\n <body>\\n <font siz... 1 \n",
"3 depends on how much over spending vs. how much... 0 \n",
"4 hehe sorry but if you hit caps lock twice the ... 0 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"original_training_data = pd.read_csv('train.csv')\n",
"test = pd.read_csv('test.csv')\n",
"\n",
"# Convert the emails to lower case as a first step to processing the text\n",
"original_training_data['email'] = original_training_data['email'].str.lower()\n",
"test['email'] = test['email'].str.lower()\n",
"\n",
"original_training_data.head()"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-34476156ed73b800",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"First, let's check if our data contains any missing values. We have filled in the cell below to print the number of NaN values in each column. If there are NaN values, we replace them with appropriate filler values (i.e., NaN values in the `subject` or `email` columns will be replaced with empty strings). Finally, we print the number of NaN values in each column after this modification to verify that there are no NaN values left.\n",
"\n",
"Note that while there are no NaN values in the `spam` column, we should be careful when replacing NaN labels. Doing so without consideration may introduce significant bias into our model when fitting."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:42.203231Z",
"start_time": "2019-04-03T20:17:42.185104Z"
},
"nbgrader": {
"grade": false,
"grade_id": "cell-b1fb39d9b651ca1b",
"locked": false,
"schema_version": 2,
"solution": true
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Before imputation:\n",
"id 0\n",
"subject 6\n",
"email 0\n",
"spam 0\n",
"dtype: int64\n",
"------------\n",
"After imputation:\n",
"id 0\n",
"subject 0\n",
"email 0\n",
"spam 0\n",
"dtype: int64\n"
]
}
],
"source": [
"print('Before imputation:')\n",
"print(original_training_data.isnull().sum())\n",
"original_training_data = original_training_data.fillna('')\n",
"print('------------')\n",
"print('After imputation:')\n",
"print(original_training_data.isnull().sum())"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "q1",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<br/>\n",
"\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"### Question 1\n",
"\n",
"In the cell below, we have printed the text of the `email` field for the first ham and the first spam email in the original training set."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:42.247245Z",
"start_time": "2019-04-03T20:17:42.228451Z"
},
"nbgrader": {
"grade": false,
"grade_id": "q1-answer",
"locked": false,
"schema_version": 2,
"solution": true
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"url: http://boingboing.net/#85534171\n",
" date: not supplied\n",
" \n",
" arts and letters daily, a wonderful and dense blog, has folded up its tent due \n",
" to the bankruptcy of its parent company. a&l daily will be auctioned off by the \n",
" receivers. link[1] discuss[2] (_thanks, misha!_)\n",
" \n",
" [1] http://www.aldaily.com/\n",
" [2] http://www.quicktopic.com/boing/h/zlfterjnd6jf\n",
" \n",
" \n",
"\n",
"<html>\n",
" <head>\n",
" </head>\n",
" <body>\n",
" <font size=3d\"4\"><b> a man endowed with a 7-8\" hammer is simply<br>\n",
" better equipped than a man with a 5-6\"hammer. <br>\n",
" <br>would you rather have<br>more than enough to get the job done or fall =\n",
" short. it's totally up<br>to you. our methods are guaranteed to increase y=\n",
" our size by 1-3\"<br> <a href=3d\"http://209.163.187.47/cgi-bin/index.php?10=\n",
" 004\">come in here and see how</a>\n",
" </body>\n",
" </html>\n",
" \n",
" \n",
" \n",
"\n"
]
}
],
"source": [
"first_ham = original_training_data.loc[original_training_data['spam'] == 0, 'email'].iloc[0]\n",
"first_spam = original_training_data.loc[original_training_data['spam'] == 1, 'email'].iloc[0]\n",
"print(first_ham)\n",
"print(first_spam)"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"Discuss one thing you notice that is different between the two emails that might relate to the identification of spam.\n",
"\n",
"<!--\n",
"BEGIN QUESTION\n",
"name: q1\n",
"manual: True\n",
"points: 2\n",
"-->"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Ham seems to be typically addressed to no one in particular, and just lays out facts. Spam are addressed to the recipient in hopes of the recipient click on it out of curiousity. "
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "cell-78513403ef52a957",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"\n",
"\n",
"## Training-Validation Split\n",
"The training data we downloaded is all the data we have available for both training models and **validating** the models that we train. We therefore need to split the training data into separate training and validation datsets. You will need this **validation data** to assess the performance of your classifier once you are finished training. Note that we set the seed (`random_state`) to 42. This will produce a pseudo-random sequence of random numbers that is the same for every student. **Do not modify this random seed in the following questions, as our tests depend on it.**"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:42.317970Z",
"start_time": "2019-04-03T20:17:42.294532Z"
},
"nbgrader": {
"grade": false,
"grade_id": "cell-873194ed3e686dfb",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"outputs": [],
"source": [
"# This creates a 90/10 train-validation split on our labeled data\n",
"\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"train, val = train_test_split(original_training_data, test_size = 0.1, random_state = 42)"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "feat-eng",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<br/><br/>\n",
"<hr style=\"border: 5px solid #003262;\" />\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"# Part 2: Basic Feature Engineering\n",
"\n",
"We would like to take the text of an email and predict whether the email is ham or spam. This is a *classification* problem, so we can use logistic regression to train a classifier. Recall that to train a logistic regression model we need a numeric feature matrix $X$ and a vector of corresponding binary labels $y$. Unfortunately, our data are text, not numbers. To address this, we can create numeric features derived from the email text and use those features for logistic regression.\n",
"\n",
"Each row of $X$ is an email. Each column of $X$ contains one feature for all the emails. We'll guide you through creating a simple feature, and you'll create more interesting ones as you try to increase the accuracy of your model."
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false,
"nbgrader": {
"grade": false,
"grade_id": "q2",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<br/>\n",
"\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"### Question 2\n",
"\n",
"Create a function called `words_in_texts` that takes in a list of `words` and a pandas Series of email `texts`. It should output a 2-dimensional NumPy array containing one row for each email text. The row should contain either a 0 or a 1 for each word in the list: 0 if the word doesn't appear in the text and 1 if the word does. For example:\n",
"\n",
"```\n",
">>> words_in_texts(['hello', 'bye', 'world'], \n",
" pd.Series(['hello', 'hello worldhello']))\n",
"\n",
"array([[1, 0, 0],\n",
" [1, 0, 1]])\n",
"```\n",
"\n",
"*The provided tests make sure that your function works correctly, so that you can use it for future questions.*\n",
"\n",
"<!--\n",
"BEGIN QUESTION\n",
"name: q2\n",
"points: 3\n",
"-->"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:42.337281Z",
"start_time": "2019-04-03T20:17:42.320567Z"
},
"nbgrader": {
"grade": false,
"grade_id": "q2-answer",
"locked": false,
"schema_version": 2,
"solution": true
},
"tags": [
"student"
]
},
"outputs": [],
"source": [
"def words_in_texts(words, texts):\n",
" '''\n",
" Args:\n",
" words (list): words to find\n",
" texts (Series): strings to search in\n",
" \n",
" Returns:\n",
" NumPy array of 0s and 1s with shape (n, p) where n is the\n",
" number of texts and p is the number of words.\n",
" '''\n",
" indicator_array = []\n",
" for w in words:\n",
" indicator_array += [texts.str.contains(w).tolist()]\n",
" return np.array(indicator_array).T.tolist()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"deletable": false,
"editable": false
},
"outputs": [
{
"data": {
"text/html": [
"<p><strong><pre style='display: inline;'>q2</pre></strong> passed!</p>"
],
"text/plain": [
"q2 results: All test cases passed!"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grader.check(\"q2\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "eda",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<br/><br/>\n",
"<hr style=\"border: 5px solid #003262;\" />\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"# Basic EDA\n",
"\n",
"We need to identify some features that allow us to distinguish spam emails from ham emails. One idea is to compare the distribution of a single feature in spam emails to the distribution of the same feature in ham emails. If the feature is itself a binary indicator, such as whether a certain word occurs in the text, this amounts to comparing the proportion of spam emails with the word to the proportion of ham emails with the word.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "q3a",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"The following plot (which was created using `sns.barplot`) compares the proportion of emails in each class containing a particular set of words. \n",
"\n",
"![training conditional proportions](images/training_conditional_proportions.png)\n",
"\n",
"You can use DataFrame's `.melt` method to \"unpivot\" a DataFrame. See the following code cell for an example."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:42.428419Z",
"start_time": "2019-04-03T20:17:42.386697Z"
}
},
"outputs": [
{
"data": {
"text/markdown": [
"> Our Original DataFrame has a `type` column and some columns corresponding to words. You can think of each row as a sentence, and the value of 1 or 0 indicates the number of occurences of the word in this sentence."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>word_1</th>\n",
" <th>word_2</th>\n",
" <th>type</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>spam</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>ham</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>ham</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>ham</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" word_1 word_2 type\n",
"0 1 0 spam\n",
"1 0 1 ham\n",
"2 1 0 ham\n",
"3 0 1 ham"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/markdown": [
"> `melt` will turn columns into entries in a variable column. Notice how `word_1` and `word_2` become entries in `variable`; their values are stored in the value column."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>type</th>\n",
" <th>variable</th>\n",
" <th>value</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>spam</td>\n",
" <td>word_1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>ham</td>\n",
" <td>word_1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>ham</td>\n",
" <td>word_1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>ham</td>\n",
" <td>word_1</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>spam</td>\n",
" <td>word_2</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>ham</td>\n",
" <td>word_2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>ham</td>\n",
" <td>word_2</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>ham</td>\n",
" <td>word_2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" type variable value\n",
"0 spam word_1 1\n",
"1 ham word_1 0\n",
"2 ham word_1 1\n",
"3 ham word_1 0\n",
"4 spam word_2 0\n",
"5 ham word_2 1\n",
"6 ham word_2 0\n",
"7 ham word_2 1"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from IPython.display import display, Markdown\n",
"df = pd.DataFrame({\n",
" 'word_1': [1, 0, 1, 0],\n",
" 'word_2': [0, 1, 0, 1],\n",
" 'type': ['spam', 'ham', 'ham', 'ham']\n",
"})\n",
"display(Markdown(\"> Our Original DataFrame has a `type` column and some columns corresponding to words. You can think of each row as a sentence, and the value of 1 or 0 indicates the number of occurences of the word in this sentence.\"))\n",
"display(df);\n",
"display(Markdown(\"> `melt` will turn columns into entries in a variable column. Notice how `word_1` and `word_2` become entries in `variable`; their values are stored in the value column.\"))\n",
"display(df.melt(\"type\"))"
]
},
{
"cell_type": "markdown",
"metadata": {
"deletable": false,
"editable": false
},
"source": [
"<!-- BEGIN QUESTION -->\n",
"\n",
"<br/>\n",
"\n",
"<hr style=\"border: 1px solid #fdb515;\" />\n",
"\n",
"### Question 3\n",
"\n",
"Create a bar chart like the one above comparing the proportion of spam and ham emails containing certain words. Choose a set of words that are different from the ones above, but also have different proportions for the two classes. Make sure to only consider emails from `train`.\n",
"\n",
"<!--\n",
"BEGIN QUESTION\n",
"name: q3\n",
"manual: True\n",
"format: image\n",
"points: 3\n",
"-->"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"ExecuteTime": {
"end_time": "2019-04-03T20:17:43.145246Z",
"start_time": "2019-04-03T20:17:42.430406Z"
},
"nbgrader": {
"grade": true,
"grade_id": "q3a-answer",
"locked": false,
"points": 2,
"schema_version": 2,
"solution": true
}
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 1.0, 'Frequency of Words in SPam/Ham Emails per Word')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAuUAAAHNCAYAAAC5LQU4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABvp0lEQVR4nO3deXxM1/8/8NdkF5EFsURijZkgq6wiGiKxViWWWCK2qCqxU1qq37aUqKUVgqB2JY01qNbWqJJE7bEEUQRVkUhC9uX+/vCb+RiTxIRJJsvr+Xh4xNx7zrnve+/Mnfece+69IkEQBBARERERkdpoqDsAIiIiIqKajkk5EREREZGaMSknIiIiIlIzJuVERERERGrGpJyIiIiISM2YlBMRERERqRmTciKqEDExMfD394eDgwMkEgn27Nmj7pDeS2xsrErX4+HDh5BIJAgNDVVJe0Sq4uXlhcDAQLlpgYGB8PLyUlNEBAB79uyBRCJBbGysukMhFWFSTlWKNBEq6d+lS5fUHSIVIz09HRMnTkR2djZmz56NxYsXw9nZudiyS5YsgUQiwdmzZxXmrV27FhKJBEOHDlWYV1BQAAcHB/Tp00fl8Vd1ubm52Lp1K/r37w9XV1fY2dmhS5cuCAoKQnh4uFzZ0NBQuc+UlZUVXFxcMGrUKJw8eVJNayAvJSUFbdq0wc6dOwEAs2fPhkQiQWpqarHlpcnLkSNHKjJMpQUGBpZ6XAsLC1N3iDXK1KlTIZFI8ODBA4V58+bNg0QiwcyZMxXmJScnQyKRYNy4cRURJlVDWuoOgOhdfPjhh/jggw8Upjdt2lQN0dDbXL16FRkZGViwYAG6detWallXV1esW7cOMTEx6NChg9y8uLg4aGlp4cqVK8jOzkatWrXklpGVlQVXV9dyWYfy1qRJE1y5cgWampoqbbegoAAjRozAxYsX4enpiT59+kBfXx8PHz7E33//jTVr1mDs2LEK9SZNmgRzc3MUFhbi3r172LVrF8aNG4clS5ao/YfP8ePHIQgCunbtqtY4VElHRwfz588vdl6bNm0qOBp5lfXHTHlxdXXF4cOHERsbq/CdEhsbCy0trWJ7p6XTquoxiNSPSTlVSW3btkXfvn2VLl9YWIi8vDy5JI4qzrNnzwAARkZGby3r6OgIbW1txMXFyU0vKCjAhQsX8NFHH2HPnj24ePEi3N3dZfOl5V1cXFQS88uXL2FgYKCStpQhEomgq6ur8naPHz+OixcvYsSIEfjiiy8U5j958qTYeh988AFsbGxkr7t164b+/ftjzZo1ak/Kjx49Cnt7e5iamqo1DlXS0tIq0zGtIuno6Kg7BJUr7fMtTapjY2MxcOBA2fTk5GTcu3cP/fr1w549e3D//n00a9ZMNr+qH4NI/Th8haod6anqM2fOYNWqVfD29oatrS1+/fVXAIAgCNixYwf69esHOzs7ODg4IDAwEDExMQpt5ebmIiQkBB4eHrC1tcWAAQNw+vRp2eny1xU37hIoeexxXl4e1qxZg969e8PGxgZOTk4YN24crl+/XmL93bt3o3fv3rC2tkaXLl2wbt26YrfB9evXMWnSJLi7u8Pa2hqenp6YNm0aHjx4gLy8PLi5uWHIkCHF1l23bh0kEgn+/vvvkjfy/3fz5k1MmDABrq6usLGxQa9evbBu3ToUFhbKbZdZs2YBAIYPHy47JV8SfX19WFtb4+rVq8jOzpZNl/aEDx48GKampgo9VXFxcRCJRHLDYo4dO4bBgwfDwcEBDg4OGDx4MI4dO6awTOm+u379OoKCguDo6IiPPvpIrh1fX1/Y2NjA09MTP/74IwoKChTayc3NRWhoKLp37w47Ozs4OTmhT58+CAkJeeu2LG5M+evTTp48if79+8PGxgYeHh4ICQkpNoY33b9/HwAUzjpINWrU6K1tAIC1tTWMjY1l7f33339YtGgR+vbtC2dnZ9n+Dw8Pl9v/wP8+k2fPnsXKlSvRpUsX2NraYuDAgbIhZ3FxcRgyZAjs7e3h4eGBVatWFRvHy5cvcfbsWXh7eysVd0mKioqwevVqBAQEoGPHjrC2tkbnzp3x1Vdf4fnz53JlX98Phw8fRt++fWFrawsfHx/s3r0bAPD48WNMmjQJLi4ucHBwwIwZM/Dy5cv3irE40mPP8+fPMXv2bLi6usLBwQHjx49HcnIyAGDXrl3o2bMnbGxs0KNHj2Lf89u3b8fo0aPRqVMnWFtbw8PDAzNmzMDDhw8VypZ0bHvT7du3MWnSJFmbHTt2RGBgIP744w+l1ys1NRWfffYZXF1dYW9vjxEjRigcE6UOHz6MIUOGwMHBAXZ2dhg4cGCxvfoSiQSzZ8/G2bNnZeU//fTTEmNp0aIFGjZsqHCMkb4eN25csb3lsbGxMDQ0lDuz8csvv8DPzw+2trZwdHTE6NGjiz22vi3GX375BT169IC1tTV8fHywefNmCIJQ4jpQ1cSecqqSsrOzFcaP6ujoyPUqSJMWf39/1K5dGy1atAAAzJw5E4cOHUL37t3Rr18/5OXlISoqCqNHj0ZoaKjcKfFp06bh2LFj6NKlCzp16oQHDx5g4sSJMDc3f6/48/PzERQUhIsXL6Jv374ICAjAy5cvERERgSFDhmDbtm1yvZQAsHPnTjx79gwDBgyAoaEhDhw4gCVLlqBRo0ZyPZcnT57ExIkToa+vjwEDBqBZs2ZITk7G6dOncevWLTRt2hR+fn746aefkJiYiFatWsktZ8+ePWjevDmcnJxKXYerV68iMDAQWlpaCAgIQP369XHy5EksWbIEN2/exNKlSwEAX3zxBU6dOiUb/tCyZcu3bh9XV1dcvHgRFy5cQMeOHQG8Str09fXRrl07ODk5yX0hSnvRJRIJTExMALxKOr755hu0bNlS9uW2d+9eTJgwAd988w0GDRokt8zHjx9jxIgR6NGjB7p164asrCwAr3plJ06ciCZNmmDChAnQ1NTEnj17ik00vv76a+zevRu+vr6wt7dHUVER7t27994XYkVHR2PHjh0YPHgw+vfvj+PHj+Onn36CkZHRW8evWlhYAAAOHDiADh06QE9P751iSE1NRUZGBurXrw8ASEhIwO+//w4fHx80bdoU+fn5+PPPP7F06VI8fPgQ33zzjUIbS5YsQVFREYYPH478/Hz89NNPCAoKQkhICObMmQN/f3/06dMHv/76K1asWAFzc3OF3uPo6Gjk5+cXm5Snp6cXG7t0X74uPz8fGzZsQLdu3dC1a1fUqlULV69exe7du3HhwgXs3r1boYf45MmT2LlzJ4YMGQJjY2NERkbiiy++gLa2NpYvXw43NzdMnTpV1o6uri4WLFhQpm1cHENDQ2hpyX9djxkzBo0aNcKkSZPw4MEDbN26FcHBwfDx8UFERAQGDBgAHR0dbN26FZMnT8aRI0dk7wUA+Omnn2Bvb4/AwEAYGxvj1q1biIyMRExMDKKiomSfI2U9f/4cI0aMAAAMHjwYZmZmeP78OeLj43H58mV07txZqXbGjBkDIyMjBAcH49mzZ9i2bRsCAgKwa9cuiMViWbnly5djzZo16NSpEyZPngwNDQ0cPXoUkydPxrx58xAQECDXbnx8PH777Tf4+/vDz8/vrXG4uLggKioK9+7dQ/PmzQG8Oga1aNECzZo1Q9u2bREbGwt/f38AwNOnT3Hv3j107doVGhqv+ju///57rF+/Hra2tpg2bZrsGD9ixAiEhYXB09NTqRg3bdqEhQsXwsrKCtOmTUN2djY2bNiAevXqKbVNqQoRiKqQmJgYQSwWF/tvypQpgiAIwu7duwWxWCx069ZNyMrKkqv/+++/C2KxWNi5c6fc9Pz8fMHPz0/o0qWLUFRUJAiCIPz555+CWCwWZs2aJVf26NGjsmW+rkuXLsKwYcNKjHn37t2yaRs3bhTEYrFw6tQpubIvXrwQPD095dqR1u/YsaOQnp4um56VlSW4uroK/v7+CtPc3NyEJ0+eKMRSWFgoCIIg3L17VxCLxUJISIjc/L///lsQi8VCeHi4Qt03DRo0SGjTpo1w48YN2bSioiJh0qRJglgsFs6cOSObLt0nMTExb21XEAThzJkzglgsFpYuXSqbNnr0aGH06NGCIAjC9u3bhXbt2gmZmZmCIAjChQsXBLFYLMyfP18QBEFIS0sT7O3tBW9vb+HFixeyNl68eCF07dpVsLe3l9uWXbp0EcRisRARESEXR0FBgeDp6Sm4uLgIKSkpsukZGRlC586dFfars7OzMGbMGKXW8U1JSUmCWCwWVqxYoTDNzs5OSEpKkk0vKioSevfuLXTs2PGt7ebm5gp+fn6CWCwWHB0dhbFjxworV64U/vrrLyEvL0+h/IoVK2T7LyUlRXj69KkQFxcnDB48WBCLxcKSJUsEQRCE7Oxs2WfldTNmzBCsrKyE//77TzZNuv99fX2F3Nxc2fRjx44JYrFYaNOmjXD58mW5mDt27Cj33paaPHmy0Lt3b7lps2bNKvG48Pq/X3/9VW4bZmdnK7QfEREhiMVi4dChQ7Jpr++Hhw8fyqanpKQI1tbWgkQiEX766Se5diZMmCC0a9dOePnypcIy3jRs2LBS475y5YrCuv7f//2fXBvfffedIBaLBU9PT7n3/I0bN+T2m5T0s/M66efuzc9/cce2YcOGCV26dJG9lu7L17dbWUjXa8KECXLvq6tXrwoSiUT22RcEQYiPj1c4Pkh9+umngoODg9w2kG7Hv/76S+l4pO+D178runXrJnz55ZeCIAjC4sWLBQ8PD9m8qKgoQSwWCxs3bhQEQRASExMFiUQiDB48WO49/+TJE8HR0VHo0qWLUFBQ8NYY09PTBTs7O6Fnz55y32f//vuvYG9vX6bjKlV+HL5CVdKgQYOwceNGuX9vno4cMmSIwhjyAwcOoHbt2vD29kZqaqrsX0ZGBry8vPDo0SPcu3cPAGSnfIOCguTa8Pb2lvW6v6sDBw6gZcuWaNeunVwceXl5cHd3x/nz55GTkyNXp3///jA0NJS9rlWrFuzt7WXxAsDp06fx/PlzjBo1Cg0bNlRYrrQHp0WLFnBxccH+/fvlhkBERkZCS0vrrT1JKSkpuHjxIry8vGBlZSWbLhKJZD23R48eVX6DvMHBwQE6OjqyMZrSnnDpWE0XFxfk5+fjwoULAP43llM6FvSvv/5CVlYWAgMD5c6eGBgYYNiwYcjKysKZM2fklmlsbIx+/frJTbt27Rr+/fdf9OvXD3Xr1pVNr1OnDgYPHqwQt4GBAe7cuYNbt26987oXp2vXrnJnZ0QiEVxdXZGcnIzMzMxS60p7S6dMmQIzMzNER0djxYoVGDVqFDw9PXHgwIFi640cORIdOnSAh4cHhg0bhhs3bmDUqFGYPHkyAEBPTw8ikQjAq6FYaWlpSE1NhYeHB4qKihAfH6/Q5pAhQ+R6n6VnY+zs7GBraysXs42Njdx7W7qcU6dOlXiBZ2hoqMJxYePGjQqfYeDVNpSeNSgsLERGRgZSU1Ph5uYGALhy5YpCna5du6JJkyay13Xr1kWLFi2goaGh0DPr5OSE/Px8PHr0qNhY36Srq1ts7Bs3biz2eCPtlX59eQDQt29fufe8lZUVDAwMZMOOpPT19QG8Gsbz4sULpKamQiKRoE6dOsWu+9vUqVMHAPDnn3++17CdMWPGyN5XAGTDYM6ePSt7r0dFRUEkEsHX11fu+JmamgovLy9kZmYq3InLyspK7hqUt5G+D6THFmlP+OvHoKdPn+Kff/6RKyetJ70YecyYMXLv+YYNG8LPzw+PHj1SGJZTXIynT59GdnY2AgIC5L7P3jxDStUDh69QldSsWbO3HmCL+yJLTExEZmZmqXVTUlLQokULJCUlQUNDQ3bq8nWtWrWSHYzfRWJiInJyckoc5wu8Oh3cuHFj2evihswYGxsjLS1N9lqaxLRt2/atMfj7+2PGjBn4448/4O3tjczMTBw5cgSdO3eWDVEoiXTcqaWlpcK8Vq1aQUNDA0lJSW+NoSR6enqws7PDxYsXkZWVhYSEBGRlZcnGi1taWqJu3bqIjY2Fh4cH4uLioKGhIZsvja9169YKbUtPgb8Zn4WFhcKdT6Rlihty8+awH+DVUJ3PPvsMffr0gYWFBVxdXdGlSxd4eXnJfhC9i9eHHUgZGxsDANLS0lC7du1S69euXRuffvopPv30U7x8+RJXrlzBsWPHEBERgVmzZqFJkyZwdHSUqzNv3jy0aNECIpEIhoaGaNWqldzQl4KCAoSHh2P//v24f/++wvjWjIyMt66H9MLf4t7bRkZGcu9tALLEzMfHp9j1dHJykvvxJFXSxayHDx/Gxo0bcePGDeTn58vNK24oTHH7wcjICKampgpDXaQ/oN9ch5JoamqWKWl8Mxbp8kralm+Okz979izCwsJw+fJl5Obmys0raRhQaVxcXODr64s9e/YgKioK1tbWcHd3R69evYo9TpSkuM9Vq1atcPr0aTx+/BitW7dGYmIiBEFAz549S2xHenG5VHHH8dJYWFjAzMxMNvRMmnRLjzGOjo7Q1NREbGwsWrRogdjYWBgbG8uul1H2GPT6MMXiYpS2o+wxiKo2JuVUbRU3dlYQBNStW1c23rk4xR1Ei2tHWW9e9CatLxaL8fnnn5dY783kQplb5Unjer2nqSTdu3fH/PnzERkZCW9vbxw+fBhZWVlydxt423LKk6urK86dO4fz58/j+vXrqFWrltwXmLOzM+Li4mS96FZWVkrd3aUkxd2ZpyzbE3h1FuXEiROIjo7GuXPncObMGURGRsLJyQkbN25857tYlLbvy7ovDAwM4O7uDnd3d1hZWeHLL7/Enj17FJJyW1tbhesaXrdo0SJs3boVvXr1wrhx41C3bl1oa2vj2rVrsrHjbyrph4myt4E8evQoGjduDGtra6XKl+b333/H1KlTYWtriy+++AKNGzeGrq4uCgsLMWbMmGK3a0lxqnL/KOtdYpG6cuUKgoKC0LRpU0yfPh3m5uayMx9Tp05955hDQkIQFBSE6OhonD9/Hhs3bsSaNWvwxRdfYNiwYe/UJqC4DQVBgEgkwrp160pc3zd/CLzLnbdcXV2xd+9e3L17F3FxcWjWrJnsDKSBgQGsrKwQFxcHLy8v3Lt3Dz4+PrJjxbtsw9KOQcWpiOMwVSwm5VSjNGvWDPfu3YOdnd1bexctLCxkF+q9majfvXtXofybvdZSxfUYN2vWDM+fP4ebm9t79aC+Sdqbcv36ddkFkiXR0dGBr68vtm7div/++w+RkZFo2LAhOnXq9NblSHvp7ty5ozDv7t27KCoqKrZXsSxcXV2xcuVKxMbG4saNG7C3t4e2trZsvrOzMxYtWoTY2FiF+5NLl3379m2FsxHSmJWJT3qP4sTERIV5xU0DXr0P+vbti759+0IQBCxZsgTr16/H8ePHS+3ZUwc7OzsAr+6kUlb79++Hs7Mzli9fLjf9zWESqlJUVIQTJ06gV69eKmlv//790NXVxZYtW+SSoZL2a3Vy8OBBFBYWYt26dXKfg6ysrGLPcJSFWCyGWCzGxx9/jIyMDAwcOBBLly5FQECAUj9uExMTYW9vLzft7t270NTUhJmZGYBXPcp//vknzMzMyrW3WJqUx8bGIjY2VuGBZy4uLjh48KDC8Dngf8eO27dvK9zrvCzHIGmZu3fvKhzLivseoqqNY8qpRvH19UVRURGWLVtW7PzXT3lKx61u2LBBrsyxY8eKHbrSvHlz/PPPP3IJTl5eHrZv315sHMnJydi4ceNb4yiLjh07wsTEBBs3bsTTp08V5r/Zs+Lv74/CwkIsWbIEly5dgp+fn1I9bfXq1YODgwNOnjwpN35aEATZEyJLGmKgLHt7e+jq6uLMmTO4cOGCwheis7MzCgoKsHr1agDy9wbu2LEj9PX1sW3bNrnxrS9fvsS2bdugr6//1h8tANCuXTs0atQIe/bskbszxsuXL2VPk5SSjkt+nUgkkg0lepchAapw48aNYt8LwP+umyjL8AIpDQ0NhfdTVlYWNm3aVOa2lHHhwgWkpKS8960QpTQ1NSESieR69AVBkL2fqrOSPuNr164t9gyHMtLS0hTqGhoawtzcHNnZ2QpDZEqyfv16uffVtWvXcObMGXTo0EHWkSK9XemyZcuKPROZkpLyTuvwJmmSfejQIdy7d6/YY1BycrLsWPD6McjLywsikQgbNmyQGxr19OlT7NmzB02aNFFqmGHHjh2hp6eH7du3y90i9smTJ4iKinqv9aPKhz3lVKP06NED/fr1w7Zt23Dt2jV06dIFJiYmePLkCS5duoT79+/j+PHjAIBOnTqhS5cu2Lt3L9LS0tCpUyckJSXJbs315sV8AQEBOHToEEaOHInBgwcjPz8f+/fvL/aU5PDhw3HmzBksXrwYMTExcHNzg4GBAR4/foyYmBjZxXllVatWLSxYsACTJ09Gnz59ZLdETE1NxenTpzFy5Ei5pKZVq1ZwdHTEgQMHIBKJMGDAAKWXNWfOHAQGBiIgIABDhw6FqakpTp48idOnT+PDDz8sdby8MnR0dODg4CC7f/ybD+SQSCQwNjbGuXPn5MaTA6+SgRkzZuCbb76Ru73Y3r17cf/+fXzzzTeyC9NKo6mpic8//xxTpkzBwIED4e/vD01NTezevRvGxsZ4/PixrGxmZiY8PDzg5eWFtm3bom7dunj48CF+/vlnGBkZoUuXLu+1Pd7VmTNnsHz5cnTs2BHt27dH/fr18eLFC8TFxeHEiRMwNTXFqFGjytxu9+7dsWvXLkyZMgXu7u549uyZbLuUh6NHj8LY2Pitt+pUVvfu3fHbb79hxIgR8PX1RUFBAY4dOyaX+FSkgoIC7N+/v9h5FhYWaN++vcqW5e3tjU2bNuHjjz/GoEGDoK2tjb/++gsJCQllvhWi1L59+7B582Z4e3ujWbNm0NLSwrlz53D69Gn07NlT6VtxPn78GEFBQfDy8kJycjK2bdsGPT09ucfa29raYuLEiQgNDYWvry+6d++Ohg0b4unTp7h27RpOnTpV7IXGZWVmZgYLCwucO3cOgOIxyMnJCRoaGjh37hxMTEzkbtnYsmVLBAUFYf369Rg2bBh69uyJzMxMREREICsrC0uWLFGqA8TIyAiTJ09GSEgIBg8eDF9fX2RnZ2Pnzp1o3rx5ifdwp6qJSTnVOAsXLoSrqysiIiKwdu1a5Ofnw9TUFG3btsX06dPlyv7www/44YcfEBUVhTNnzqB169ZYsWIFDh06pJCUOzo6YtGiRVizZg2+//57NGjQAEOGDIG1tTVGjhwpV1ZbWxtr167Fjh07sH//ftkDYxo0aAAbGxul7qNbkq5du2LHjh1Ys2YNIiMjkZmZifr168PR0bHYh/b4+/vj/PnzcHV1LdOQExsbG+zcuRMrVqzAzz//jKysLFhYWGDGjBkYPXr0O8f/OldXV8TExEBXV1c21EJKJBLB0dERx48fR5s2bRSS7ICAADRo0AAbNmyQPYjGyspK9kApZfXo0QMrVqzAqlWrEBoainr16sHPzw/Ozs5y66mnp4cRI0bg7NmzsgsSGzRoAC8vL3zyySfF3g2nInTv3h15eXk4c+YMduzYgZSUFGhpaaFJkyYYOXIkgoKC3unJmJ9//jlq166NI0eO4Pjx42jcuDEGDRoEGxsbhfe7KkifF/Dm/brfVe/evZGZmYlNmzYhJCRE9sNp+vTpanlMel5eHj777LNi5/Xp00elSbmjoyNCQ0MRFhaGH3/8Ebq6unB3d8e2bdveeey3q6srbty4gT/++APJycnQ0NCAubk5Zs2aVaY2169fj4ULFyI0NBQ5OTmws7PDZ599JneXJwAIDg6GtbU1tm7dii1btiArKwv16tVD69ati31y7btydXVFUlISmjRpIhs+I2VkZASxWIybN2/CxcVFYXjOzJkz0axZM+zYsQNLly6FtrY27OzssHTp0jL9uBw9ejT09fWxceNGLF26FI0bN8bo0aNRp04dla4rqZ9IUOOVAk+ePMH69etx7do13Lx5E1lZWdiyZYvSB8QHDx7IxpQWFRXByckJs2bNeqdTsURlMXv2bOzduxcJCQnqDuW9HT58GFOnTsXSpUvx4YcfqjscIgU3b95E3759y/yDiqqO6nRMJXpXah1Tfv/+fRw6dAj6+vqye3sqKyUlBUOHDsWjR48QEhKCZcuWIT09HcOGDSvx9ldEpGjHjh0wMTFBt27d1B0KUbHy8vIQHBys1HUARERVlVqHrzg7O+Ps2bMAXp2aPHHihNJ1N2zYgIyMDOzevVt2Wtje3h5du3bF6tWr8fXXX5dLzETVQUpKCs6ePYu///4b586dw/Tp09/5dn1E5c3W1lbu4UJERNWRWnvK3+dWcMeOHYO7u7vcOE0TExN06dLlvZ4kSFQT3LlzB9OnT8ehQ4cwePDgd7rQj4iIiFSnSt4SMScnBw8ePJC70llKIpEgJSVFZbdEIirOokWLqvTYR1dXVyQkJODcuXP4+uuv5e7/TURU0ar6MZVIFark3VfS09MhCEKxT+97/dHT9erVe2tbRUVFyMzMhLa2ttJP7SMiIiIiKitBEJCfn4/atWsrjBipkkm5lCqS6MzMTIVb2xERERERlRexWKxwK98qmZQbGRlBJBIV+0hz6TRlH2AhPW0vFot5oRsRERERlZu8vDzcunWr2GGjVTIp19PTg4WFRbE93Ldu3ULdunWVGroC/K+3XUdHB7q6uiqNk4iIiIjoTcWN9qiSF3oCrx4TfObMGSQnJ8umpaWl4eTJk/Dx8VFjZEREREREZaP2nvIjR44AAK5evQoAOHfuHJ4/f45atWrB09MTABAYGIi4uDi5K7ODgoJw4MABjB07FhMmTICWlhZWr14NLS0tjBs3ruJXhIiIiIjoHak9KZ88ebLc69DQUABAkyZNSn2YUP369bF9+3aEhITgs88+gyAIcHR0xLZt22BmZlauMRMRERERqZJIEARB3UGoU25uLuLj42Ftbc0x5URERERUbkrLO6vsmHIiIiIioupC7cNXiIiIiEh5GRkZePr0KfLz89UdCv1/2traaNCgAQwNDd+5DSblRERERFVERkYG/vvvPzRp0gS1atXi08grAUEQkJ2djUePHgHAOyfmHL5CREREVEU8ffoUTZo0gb6+PhPySkIkEkFfXx9NmjTB06dP37kdJuVEREREVUR+fj5q1aql7jCoGLVq1XqvIUVMyomIiIiqEPaQV07vu1+YlBMRERERqRmTciIiIiIiNWNSTkRERESkZkzKiYiIiEhpN27cQGhoKB4+fKjuUKoVJuVEREREpLQbN25g5cqVsvtyk2owKSciIiIiUjMm5URERESklNDQUHz++ecAgOHDh0MikUAikaB9+/aQSCT45Zdfiq3Xu3dv+Pj4QBAEAEBgYCC8vLyQlJSETz/9FI6Ojmjfvj0mTJiApKQkhfqCIGDHjh3o168f7Ozs4ODggMDAQMTExJTfylYwJuVEREREpBQfHx8MGjQIADBu3DgsXrwYixcvRnh4OExNTREZGalQ59KlS7hz5w769+8vdy/vrKwsDB8+HNra2pg2bRoGDBiA6OhoDBkyBMnJyXJtzJw5E99++y2aNm2KmTNnYuLEiXj58iVGjx6N48ePl+9KVxAtdQdARERERFWDlZUV7O3tsWvXLri7u8PV1VU2r1+/fli7di3u3LkDS0tL2fTIyEhoamrCz89Prq3nz5+jT58+mDNnjmyas7MzgoODERoaim+++QYAcPToUURFReGbb76R/SAAXvXU+/v7Y8GCBfDy8qryD1ViTzkRERERvbeBAwdCJBLJ9ZZnZWXh8OHD+OCDD9CwYUOFOmPHjpV77ePjgxYtWsj1fh84cAC1a9eGt7c3UlNTZf8yMjLg5eWFR48e4d69e+W2XhWFPeVERERE9N4sLCzg7u6O/fv3Y/r06dDW1savv/6KzMxMDBgwQKG8oaEhTE1NFaa3atUKx44dQ1ZWFvT19ZGYmIjMzEy4u7uXuOyUlBS0aNFCpetT0ZiUExEREZFK+Pv7Y/LkyThx4gS6d++OyMhImJqaonPnzgplSxpuIr0Y9PXXdevWxdKlS0tcbuvWrd8r7sqASTkRERERKa20sdtdu3ZFvXr1EBkZidatW+PChQv4+OOPoaWlmHKmp6cjOTlZobf87t27qFevHvT19QEAzZo1w71792BnZ4fatWurdmUqEY4pJyIiIiKlSZPl9PR0hXna2trw8/PD6dOnsWrVKgAoduiKVHh4uNzro0eP4p9//oG3t7dsmq+vL4qKirBs2bJi23j27FmZ16EyYk85ERERESnNxsYGGhoaWLNmDdLT06Gvrw9zc3PY2dkBeDWEZcOGDTh48CBcXFzQvHnzYtsxMTHB0aNH8fTpU7i4uOD+/fvYsWMH6tevj+DgYFm5Hj16oF+/fti2bRuuXbuGLl26wMTEBE+ePMGlS5dw//79anFbRPaUExEREZHSzMzM8N133yEnJwdff/01pk2bhp9//lk2v1mzZrJbJfbv37/EdvT19bF161bk5eVh6dKl+OWXX9CpUyfs2LEDDRo0kCu7cOFChISEQENDA2vXrsW3336Lffv2QV9fH9OnTy+fFa1g7CknIiIiojLx8/NTuO/463R0dGBoaIgePXqU2o6FhQVWr16t1DJ9fX3h6+tbljCrFPaUExEREZHK3L9/H6dPn0bfvn2hp6en7nCqDPaUExEREdF7u3z5MhITE7F161Zoa2tj5MiR6g6pSmFSTkRERETv7eeff8a+fftgYWGBJUuWwNzcXN0hVSlMyomIiIjovS1atAiLFi1SquzWrVvLOZqqh2PKiYiIiIjUjEk5EREREZGaMSknIiIiIlIzJuVERERERGrGpJyIiIiISM2YlBMRERERqRmTciIiIiIiNWNSTkRERFTF5eUXqjuE94ohNDQUEokEGRkZKoyoauHDg4iIiIiqOB1tTQz9bLtaY9ixOECty6/q2FNORERERKRmTMqJiIiIqFJITk7GlClT0L59e7i7u+Pzzz/HixcvZPO3b9+OoUOHws3NDQ4ODujbty927NiBoqIiuXa8vLwwfvx4HDlyBB9++CFsbGzQp08fnDlzBgCwZcsWeHt7w8HBAcOHD0dSUlKFrmdxOHyFiIiIiCqF4OBg9OrVC/7+/khISMCyZcsAAAsXLgQAJCUloW/fvmjSpAk0NTVx5coVLF68GE+fPsWUKVPk2rp27RoePXqE8ePHQ19fH8uXL8eECRMwePBg3L59G1988QWysrKwcOFCTJo0CXv37q3o1ZXDpJyIiIiIKoVBgwZh5MiRAAB3d3c8ePAAu3fvxnfffQeRSITZs2fLyhYVFcHZ2RmFhYXYtGkTJk+eDJFIJJufnp6OyMhImJqaAgD09fURGBiIkydP4uDBg9DSepUGp6Sk4LvvvkNiYiJatWpVcSv7BiblRERERFQpeHl5yb2WSCTIzc3Fs2fPYGpqimvXrmH16tW4dOkSUlJS5IatpKSkoH79+rLX7dq1kyXkAGQJt4eHhywhf336o0ePmJQTERERERkbG8u91tHRAQDk5ubi4cOHCAgIQKtWrTBr1iw0adIE2traOHbsGNasWYOcnBy5ukZGRnKvtbW1S52el5enylUpMyblRERERFTpHT9+HNnZ2QgNDYWZmZnc9OqAd18hIiIiokpPOl5c2rMNvOpBP3DggLpCUin2lBMRERFRpdexY0doa2tj+vTpGDNmDDIzM7Fx40a58eFVGXvKiYiIiKjSa9WqFX744Qc8f/4cwcHB+P7779G5c2d8/PHH6g5NJUSCIAjqDkKdcnNzER8fD2tra+jq6qo7HCIiIqIS3bhxA23atFGYnpdfCB1tTTVEVLliULeS9o9UaXkne8qJiIiIqrjKkAxXhhiqMiblRERERERqxqSciIiIiEjNmJQTEREREakZk3IiIiIiIjVjUk5EREREpGZMyomIiIiI1IxJORERERGRmjEpJyIiIiJSMyblRERERERqxqSciIiIiEjNmJQTERERVXFFBfnqDqFSxFCVaak7ACIiIiJ6Pxpa2ji/eIxaY3D8bL1al1/VsaeciIiIiEjNmJQTERERkVqlpqZi7ty58PT0hLW1NTp06IBhw4bh8uXLAAAvLy+MHz8ehw4dQs+ePWFjY4MePXrgwIEDCu189dVX6NmzJ+zt7eHh4YExY8bg2rVrcuViY2MhkUhw6NAhzJ8/Hx06dICDgwOCg4ORlpaG1NRUTJ8+Hc7OzvDw8EBISAgKCgrKdRtw+AoRERERqdXMmTPx4MEDTJ06FU2aNEFaWhouX76MtLQ0WZn4+HgkJCRg4sSJMDIywq5duzBz5kxoaWmhV69eAIC0tDRoampi0qRJqFevHl68eIF9+/Zh8ODB2Lt3LywtLeWWu2TJEnTq1Anff/89/vnnHyxevBiff/45nj17hg8++AD9+/fH2bNnER4ejkaNGmHEiBHltg3UmpRnZmZi+fLlOHLkCDIyMmBpaYkJEyaga9eub63722+/YePGjUhMTAQAtGzZEiNGjJDtFCIiIiKqGi5cuIApU6bA19dXNs3Hx0euzNOnT3Ho0CG0atUKAODp6Yk+ffrgxx9/lOV/LVu2xLx582R1CgsL8cEHH+DDDz9EREQEvvjiC7k2ra2t8c033wAAPDw8cP36dezZsweTJ0/G+PHjAQDu7u74888/cfDgwXJNytU6fCU4OBhRUVGYPHky1q5dC0tLSwQHByM6OrrUenv37sWkSZPQoEEDLFmyBEuWLEHDhg0xdepUREZGVlD0RERERKQKtra2WLduHX766SfcuHEDhYWFCmWsrKxkCTkAaGhooGfPnrh37x6Sk5MBAIIg4JdffkG/fv3g5OSEtm3bwtraGvfu3cPdu3cV2vT09JR73bJly2Knt2rVCo8fP37v9SyN2nrKo6OjcebMGaxcuVL2S8jNzQ1JSUlYtGiRwsZ43Z49e9CkSRP88MMP0NB49buiU6dO8Pb2xv79+zFgwIAKWQciIiIien/Lly9HWFgYtmzZgpCQEBgbG6NXr16YOnUqDA0NAQD169dXqFevXj0Ar4atmJqaYsOGDfj+++8REBCAyZMnw8TEBCKRCHPnzkVubq5CfWNjY7nX2traAAAjIyOF6cXVVyW19ZQfPXoUderUkRuqIhKJ4Ofnh7t37+LOnTsl1tXS0oK+vr4sIQde/VrS19eHjo5OucZNRERERKpVt25dzJ07F3/88Qf++OMPfPrpp4iMjMT8+fNlZZ49e6ZQLyUlBcD/kuuDBw/C1dUV8+bNg6enJ2xtbWFjYyM3Nr2yUltSfvv2bVhaWsol1gAgkUgAALdu3SqxbkBAABITE7F69WqkpqYiNTUVq1evxj///FOuY32IiIiIqHw1btwYI0eOhL29PW7evCmbnpCQILuWEACKiorw66+/onnz5jA1NQXwqoNX2tstderUKTx58qRign8Pahu+kpaWhubNmytMl54uKO0Xjbe3N1avXo2ZM2fihx9+AADo6+vjxx9/xAcffFAO0RIRERFReXjx4gVGjBiBDz/8EC1btkStWrVw/vx5XLhwAaNGjZKVMzU1xSeffCK7+8rOnTtx584dLF++XFbG09MTa9asQWhoKJycnJCQkIDw8HA0bNhQHatWJmq9+4pIJHqneX/99RemT5+O3r17o3v37igsLERUVBSmTZuGFStWoHPnzmWOJT4+vsx1iIiIiCqSlpYWMjMzFabr6Wir/Ymahfl5yMnLL3O9goICtGnTBrt378a///6LwsJCmJmZ4dNPP8Xw4cORmZmJoqIitGnTBt27d0dYWBgePXoEMzMzfPvtt/D09JRtkxEjRiA9PR07d+7E+vXrIRaLsWjRIqxZswaFhYWycjk5ObK/r2/PvLw8AEB2drbc9IKCAgiCUOy2f11eXh7Onz9f5m0AACJBEIR3qvmeBg0aBJFIhJ07d8pNv3z5Mvz9/bF8+fJib28oCAI6deoEOzs7rFq1Sm5eYGAgHj9+jOPHjysdR25uLuLj42FtbQ1dXd13WxkiIiKiCnDjxg20adNG3WFUOC8vL1hZWSEsLEzdoZTqbfuntLxTbWPKLS0tkZiYiKKiIrnp0rHkYrG42HrPnj1DcnIyrK2tFeZZW1vj4cOH5X51LBERERGRKqktKffx8UFGRgZOnDghN33fvn1o0aKFwhOXpIyMjKCrq4srV64ozLt8+TKMjY3Z401EREREVYraxpR7enrC1dUVc+bMQVpaGszNzbFv3z6cP39e7tREYGAg4uLikJCQAADQ0dHB4MGDsXnzZsyZMwfdu3dHUVGRrO6UKVPUtEZEREREVB7e7MStjtSWlItEIoSFhWHZsmVYvnw5MjIyYGlpiZUrV8LLy6vUurNmzULLli0RERGB3377DRoaGmjevDkWL16Mjz76qILWgIiIiIhINdR2oWdlwQs9iYiIqKq4ceMGrKysSr1LHamHIAi4efNm1bvQk4iIiIjKRktLCwUFBeoOg4pRUFAALa13H4TCpJyIiIioitDT08PLly/VHQYV48WLF9DT03vn+kzKiYiIiKoIU1NTJCcnIysrCzV8BHKlIQgCsrKy8OzZM5iamr5zO2p9oicRERERKU9PTw8NGzbEkydP+FyWSkRXVxcNGzZ8r55yJuVEREREVYiRkRGMjIzUHQapGIevEBERERGpGZNyIiIiIiI1Y1JORERERKRmTMqJiIiIiNSMSTkRERERkZoxKSciIiIiUjMm5UREREREasaknIiIiIhIzZiUExERERGpGZNyIiIiIiI1Y1JORERERKRmTMqJiIiIiNSMSTkRERERkZppvU/lgoICHD9+HOnp6ejSpQtMTU1VFRcRERERUY2hdFK+ePFixMbGYvfu3QAAQRAwatQo/P333xAEAcbGxoiIiEDTpk3LLVgiIiIioupI6eErf/75J5ycnGSvT5w4gXPnziEoKAhLly4FAISHh6s+QiIiIiKiak7pnvInT56gWbNmstcnT56Eubk5ZsyYAQC4ffs2oqKiVB8hEREREVE1p3RPeX5+PjQ1NWWvY2Nj4e7uLnttYWGB5ORk1UZHRERERFQDKJ2UN2rUCJcuXQLwqlc8KSkJzs7OsvkpKSnQ19dXeYBERERERNWd0sNXevfujbCwMKSmpuL27dswMDCAp6enbP6NGzd4kScRERER0TtQuqf8k08+gZ+fHy5dugSRSISQkBAYGhoCAF68eIETJ06gQ4cO5RYoEREREVF1pXRPuY6ODr777rti59WuXRunT5+Gnp6eygIjIiIiIqop3uvhQVIaGhqoU6eOKpoiIiIiIqpxSkzKz507904Nvn7xJxERERERvV2JSXlgYCBEIpHSDQmCAJFIhBs3bqgkMCIiIiKimqLEpHzhwoUVGQcRERERUY1VYlLu5+dXkXEQEREREdVYSt8SkYiIiIiIykeJPeWPHz8GAJiZmcm9fhtpeSIiIiIiUk6JSbmXlxc0NDRw6dIl6OjowMvLS6kLP3mhJxERERFR2ZSYlE+YMAEikQhaWlpyr4mIiIiISLVEgiAI6g5CnXJzcxEfHw9ra2vo6uqqOxwiIiIiqqZKyzt5oScRERERkZqVOHylNJmZmXjx4gWKiooU5vFCTyIiIiKisilTUn7o0CGsXr0aiYmJJZbhhZ5ERERERGWj9PCVY8eOYfr06SgoKMCgQYMgCAJ69+6NHj16QEtLC23btsWECRPKM1YiIiIiompJ6Z7yDRs2oFWrVtizZw8yMzOxc+dO9O/fHx06dMCtW7cwZMgQWFlZlWesRERERETVktI95QkJCfD19YWuri40NF5Vk44pF4vF8Pf3R3h4ePlESURERERUjSmdlBcVFcHY2BgAoKenBwB48eKFbH7Lli1x+/Zt1UZHRERERFQDKJ2UN2zYEI8fPwbwKimvV68e4uPjZfPv3r2LWrVqqT5CIiIiIqJqTukx5e3bt8fZs2cxefJkAICXlxe2bNkCPT09CIKAHTt2oEuXLuUWKBERERFRdaV0Uj5kyBAcO3YMOTk50NPTw9SpU3HlyhWsXLkSANC6dWvMmjWr3AIlIiIiIqqulE7KbW1tYWtrK3tdt25d7N+/Hzdv3oSmpiZatWoluwCUiIiIiIiU905P9Hwdb4NIRERERPR+3ikpz87ORlpaGgRBUJhnZmb23kEREREREdUkSiflhYWFWLduHbZv345nz56VWO7GjRsqCYyIiIiIqKZQOilfuHAhtm3bhrZt26JHjx4wMjIqz7iIiIiIiGoMpZPyqKgodOvWDStWrCjPeIiIiIiIahylb5dSUFCAjh07lmcsREREREQ1ktJJuYODA+7cuVOesRARERER1UhKJ+UzZ87EwYMHcezYsfKMh4iIiIioxlF6TLlEIsG3336LSZMmoUGDBjA3N1d4WJBIJMLmzZtVHiQRERERUXWmdFIeHR2NKVOmoKioCC9fvsTjx4/LMy4iIiIiohpD6aR8yZIlaNy4MVauXAmJRFKeMRERERER1ShKjym/f/8+AgMDmZATEREREamY0km5mZkZcnNzyzMWIiIiIqIaSemkPDAwEJGRkcjMzCzPeIiIiIiIahylx5TXrl0bderUQa9evdCvXz+Ym5tDU1NToZyvr68q4yMiotfExMQgIiIC/v7+cHNzU3c4RESkIkon5bNnz5b9f/Xq1cWWEYlEZUrKMzMzsXz5chw5cgQZGRmwtLTEhAkT0LVr17fWFQQBERER2LVrFxITE6GtrY2WLVti9uzZaN++vdIxEBFVJZs2bcLt27eRlZXFpJyIqBpROinfsmWLyhceHByM69evY8aMGTA3N8fevXsRHByMNWvWwNPTs9S6c+bMwe+//44xY8bAwcEB2dnZiI+PR3Z2tsrjJCKqLLKysuT+EhFR9aB0Uu7i4qLSBUdHR+PMmTNYuXIlfHx8AABubm5ISkrCokWLSk3Kf/vtN+zduxc7duyAg4ODbHrnzp1VGiMRERERUUVQ+kJPZRQVFSld9ujRo6hTp47cUBWRSAQ/Pz/cvXsXd+7cKbHutm3b4OTkJJeQExERERFVVaUm5d27d8eJEydkr7OzszF//nzcu3dPoeyBAwfQrl07pRd8+/ZtWFpaQkNDPgTpfdBv3bpVbL38/HxcunQJEokEy5Ytg7u7O9q2bYvevXtj7969Si+fiIiIiKiyKDUpv3//vtwtEHNycrB9+3b8+++/773gtLQ0GBkZKUyXTktLSyuxXl5eHvbu3Yvjx4/jyy+/xLp16yAWizF79mxERES8d2xERERERBVJ6THlUoIgqGzhIpGozPOkQ2Ryc3MRHh6OJk2aAADc3d2RlJSEVatWwd/fv8yxxMfHl7kOEVFFkz7ELTc3F+fPn1dzNEREpCplTspVxdjYuNje8PT0dAAothddOl0kEqFly5ayhBx4lcR36tQJYWFhSElJQb169coUj7W1NXR1dctUh4iookmPU7q6unB0dFRzNEREVBa5ubkldgSr9ELPsrC0tERiYqLCxaHSseRisbjYenp6emjWrFmx86S9+KX1wBMRVZSignx1h1BmVTFmIqLqQG095T4+PoiMjMSJEyfg7e0tm75v3z60aNEClpaWpdbdtGkTHj58CHNzcwCvEvJTp07BwsICdevWLff4iYjeRkNLG+cXj1Fpm7nP/5P9VXXbAOD42XqVt0lERG/31qQ8Pj5edrpUetHn+fPn8eLFC7lyV69eLdOCPT094erqijlz5iAtLQ3m5ubYt28fzp8/j7CwMFm5wMBAxMXFISEhQTYtKCgIUVFRGDNmDIKDg1GnTh3s3r0b165dw/Lly8sUBxERERGRur01Kd+yZYvC0zxXrlypMEREEIQyDRsRiUQICwvDsmXLsHz5cmRkZMDS0hIrV66El5dXqXVNTEywfft2LF68GF9//TVycnIgFouxatUquV53IiIiIqKqoNSkfOHCheW6cAMDA8ybNw/z5s0rsczWrVuLnW5ubo4VK1aUV2hERERERBWm1KTcz8+vouIgIiIiIqqx1Hb3FSIiIiIieoVJORERERGRmjEpJyKqQnS1NOT+EhFR9cCjOhFRFdLN0gQtTfTQzdJE3aEQEZEKqe3hQUREVHZtTPXRxlRf3WEQEZGKldhTvnLlStkj7wHg8ePHyMnJqZCgiIiIiIhqklKT8tefotm1a1ccPXq0QoIiIiIiIqpJSkzKDQ0NkZGRIXstCEKFBEREREREVNOUOKa8TZs22LBhAwoKCmBkZAQA+Pvvv1FYWFhqg76+vioNkIiIiIiouhMJJXSB37x5E8HBwXj48OGrgiLRW3vLRSIRbty4ofooy1Fubi7i4+NhbW0NXV1ddYdDRNXM+cVj1B1CmTh+tl7dIRARVVul5Z0l9pRbWVnht99+Q1JSEpKTkxEYGIhx48bB3d293AMmIiIiIqpJSr0loqamJpo3b47mzZvD2dkZrq6ucHFxqajYiIiIiIjeW0xMDCIiIuDv7w83Nzd1h1Mspe9TvnXr1vKMg4iIiIioXGzatAm3b99GVlZW1U/KAaCoqAh79+7F0aNHZWPNzc3N0a1bN/j6+kJDgw8IrSmqwi9OIiIiIgDIysqS+1sZKZ2U5+Tk4OOPP8bff/8NkUgEU1NTAMCpU6cQHR2Nffv2Yd26dbxYsoaoCr84iYiIiKoKpbu2V69ejXPnzmHUqFE4e/YsoqOjER0djZiYGIwePRpxcXFYvXp1ecZKlUhV+MVJREREVFUonZQfPnwYPXv2xGeffSa7bznw6iFDM2fORM+ePXHo0KFyCZKIiIiIqDpTOil/8uRJqXdecXZ2xpMnT1QSFBERERFRTaJ0Um5oaIj79++XOP/BgwcwNDRUSVBERERERDWJ0km5u7s7duzYgT///FNh3unTp/Hzzz/Dw8NDpcEREREREdUESt99ZcqUKTh9+jTGjh2LNm3aoHXr1gCA27dv48aNGzAxMcGkSZPKLVAiIiIiqv6KCvKhoaWt7jCUpqp4lU7KmzRpgt27d2Pp0qU4efIkrl+/DgCoXbs2evfujWnTpsHMzOy9AyIiIiKimktDSxvnF49RaZu5z/+T/VV1246frVdJO2V6eJCZmRmWLl0KQRCQmpoKQRBQr149iEQilQRDRERERFQTlSkplxKJRKhXr56qY6FyUlNPAxERERFVFe+UlFPVUlNPAxERERFVFUrffYWIiIiIiMoHk3IiIiIiIjVjUk5EREREpGZMyomIiIiI1IxJORERERFVa7paGnJ/K6My3X0lKysLBw8exL1795CWlgZBEOTmi0QifPfddyoNkCqnqvDmJiIiIgKAbpYmiP4nHZ4tjNQdSomUTsqvXLmCsWPHIi0trcQyTMprjqrw5iYiIiICgDam+mhjqq/uMEqldFK+cOFCFBQU4IcffoCbmxuMjY3LMSyq7KrCm5uIiIioqlA6Kb927Ro++eQT9OjRozzjISIiIiKqcZQeEGxgYMDecSIiIiKicqB0Uu7j44PTp0+XZyxERERERDWS0kn5zJkzkZqaim+//RYPHjxQuPMKERERERG9G6XHlDs5OUEkEuHKlSvYsWNHsWVEIhGuX7+usuCIiIiIiGoCpZNyX19fiESi8oyFiIiIiKhGUjopX7RoUXnGQURERERUY/FxjEREREREaqZ0T7lUTEwMjh07hqSkJACAhYUFvL294ebmpvLgiIiIiIhqAqWT8qKiIsyaNQsHDx6EIAjQ0NCQTd++fTv69OmDkJAQjjsnIiIiIiojpZPyn376CVFRUejRowfGjRuHVq1aAQASExMRHh6OqKgoWFlZYfTo0eUWLBERERFRdaT0mPK9e/eiY8eO+OGHH2BlZQVtbW1oa2vDysoKy5Ytg7u7O3bv3l2esRIRERERVUtKJ+VJSUnw8vIqcb6Xl5dsnDkRERERESlP6aS8Vq1aePbsWYnzk5OTUatWLZUERURERERUkyidlDs5OWH79u24ffu2wrw7d+5gx44dcHZ2VmlwREREREQ1gdIXek6aNAmDBg2Cn58fvLy8YGlpCeBVQn7ixAloa2tj4sSJ5RYoEREREVF1pXRSLpFIsHXrVixYsAC///47fv/9d9k8BwcHzJkzBxKJpFyCJCIiIiKqzsr08CAbGxvs3LkTqampePjwIQRBgIWFBerWrVte8RERERERVXtlfqInANStW5eJOBERERGRiih9oScREREREZWPEnvKraysoKGhgUuXLkFHRwdWVlYQiUSlNiYSiXD9+nWVB0lEREREVJ2VmJT7+vpCJBJBU1NT7jUREREREalWiUn5okWLSn1NRERERESqofSY8nPnziE1NbXE+ampqTh37pxKgiIiIiIiqkmUTsqHDx+Ov/76q8T5MTExGD58uEqCIiIiIiKqSZROygVBKHV+YWEhNDR4MxciIiIiorIqUxZd2oWeFy9ehImJyXsHRERERERU05T68KDNmzdjy5Ytstffffcdli9frlAuIyMDL1++RP/+/VUfIRERERFRNVdqUm5oaAgzMzMAwKNHj2BsbIx69erJlRGJRGjdujXs7e0xYsSI8ouUiIiIiKiaKjUp9/Pzg5+fHwDAy8sL06dPR9euXSskMCIiIiKimkKpMeVZWVno168fdHR0VLrwzMxMzJ8/Hx4eHrC1tUW/fv1w/PjxMrUhCAKGDx8OiUSCBQsWqDQ+IiIiIqKKoFRSrq+vj/DwcDx58kSlCw8ODkZUVBQmT56MtWvXwtLSEsHBwYiOjla6jYiICNy9e1elcRERERERVSSl775iYWGB5ORklS04OjoaZ86cwfz58zFw4EB06NABISEhsLe3V/rpof/99x++//57fPnllyqLi4iIiIiooimdlA8dOhS//PILnj9/rpIFHz16FHXq1JEboy4SieDn54e7d+/izp07b23jq6++gpOTE7p3766SmIiIiIiI1KHUCz1fV7t2bRgZGaFHjx7w8/NDs2bNUKtWLYVyvr6+SrV3+/ZtWFpaKjxwSCKRAABu3boFS0vLEusfPHgQsbGxOHz4sLKrQERERERUKSmdlM+ePVv2/02bNhVbRiQSKZ2Up6WloXnz5grTjYyMZPNLkpqaigULFmDq1Klo3LixUst7m/j4eJW0Uxk5OjqqO4QyO3/+vLpDIHpvVfGzB/DzR0TqVRWPnao4biqdlL/+ECFVKe0JoaXNW7BgAczNzTFs2DCVxWJtbQ1dXV2VtUfvpyp+IImqC37+iIjKRtnjZm5ubokdwUon5S4uLsoWVYqxsXGxveHp6ekA/tdj/qa//voLhw8fxubNm/Hy5Uu5eXl5ecjIyIC+vj60tJReNSIiIiIitVL6Qs83paamIjU19Z0XbGlpicTERBQVFclNv3XrFgBALBYXW+/27dsoKipCYGAgnJ2dZf8AYOfOnXB2dsaZM2feOS4iIiIioopWpu7k//77D8uWLcPx48eRmZkJADAwMEDXrl0xdepUNGzYUOm2fHx8EBkZiRMnTsDb21s2fd++fWjRokWJF3n26NEDbdq0UZg+fPhwdO/eHQEBAbKLRYmIiIiIqgKlk/LHjx/D398fz549Q5s2bWRJc2JiIvbt24e//voLERERSl946enpCVdXV8yZMwdpaWkwNzfHvn37cP78eYSFhcnKBQYGIi4uDgkJCQCARo0aoVGjRsW22bBhQ7i6uiq7SkRERERElYLSSfmPP/6IjIwMrF27Fp6ennLzoqOjMXHiRPz4449KP/hHJBIhLCwMy5Ytw/Lly5GRkQFLS0usXLkSXl5eZVsLIiIiIqIqTOmk/K+//sLQoUMVEnLgVa/3kCFDcPDgwTIt3MDAAPPmzcO8efNKLLN161al2pL2pBMRERERVTVKX+iZnp6OZs2alTi/WbNmyMjIUElQREREREQ1idJJeaNGjRAXF1fi/L///rvEsd5ERERERFQypZPyHj164MiRI1i6dClevHghm/7y5UssW7YMv/76K3r16lUuQRIRERERVWdKjykfP348/v77b6xbtw4//fQTGjRoAAB4+vQpCgsL0b59e3z66aflFigRERERUXWldFJeq1YtbNu2Dbt378axY8fw8OFDCIIADw8PeHt7w8/Pj0/RJCIiIiJ6B2XKojU1NeHv7w9/f//yioeIiIiIqMZRekz5m3JycpCTk6PKWIiIiIiIaqQy9ZSnpKQgNDQUx44dQ0pKCgCgXr168Pb2RnBwMOrXr18uQRIRERERVWdKJ+VJSUkYOnQokpOT0aJFC9jb20MQBNy9exc7d+7E8ePHsWPHDlhYWJRnvERERERE1Y7SSXlISAjS0tKwcuVKeHt7y807evQopk2bhpCQEKxcuVLlQRIRERERVWdKjyk/e/YsAgICFBJyAPDx8cGQIUNw9uxZlQZHRERERFQTKJ2Ui0QiNGvWrMT5zZs3h0gkUklQREREREQ1idJJubOzM2JjY0ucHxcXBxcXF5UERURERERUkyidlH/xxRe4cuUKFi1aJLvzCvDqjiwLFy7ElStX8MUXX5RLkERERERE1ZnSF3qOHDkSOTk52Lx5MzZv3gxDQ0MAQEZGBgDAxMQEI0aMkKsjEolw7NgxFYZLRERERFT9KJ2Um5mZlWccRERERJVWTEwMIiIi4O/vDzc3N3WHQ9WQ0kn51q1byzMOIiIiokpr06ZNuH37NrKyspiUU7lQekw5ERERUU2VlZUl95dI1ZTuKZd68OABjh8/jqSkJACAhYUFunbtiqZNm6o8OCIiIiKimqBMSfkPP/yAdevWobCwUG76999/j08++QSTJ09WaXBERERERDWB0kl5ZGQk1qxZAwcHBwQFBUEsFgMAbt++jQ0bNmDNmjUwNzdH//79yy1YIiIiIqLqSOmkfMeOHbCzs8PWrVuhpfW/ak2bNoWnpycCAgKwfft2JuVERERERGWk9IWeiYmJ6NWrl1xCLqWlpYVevXohMTFRpcEREREREdUESifl2trapV5xnJmZCW1tbZUERURERERUkyidlNvY2GDXrl149uyZwryUlBRERETAzs5OpcEREREREdUESo8pHz9+PEaOHIlevXqhf//+sLS0BADcuXMHe/bsQWZmJpYsWVJugRIREREpo6ggHxpaVevsfVWMmVRL6aTc2dkZoaGh+Pbbb7Fx40a5eWZmZli0aBGcnJxUHiARERFRWWhoaeP84jEqbTP3+X+yv6puGwAcP1uv8japainTfcq9vLzQuXNnxMfH4+HDhwBePTyoXbt20NDgw0GJiIiIiN6FUkl5ZmYm+vbti2HDhmHkyJGwtbWFra1tecdGRERERFQjKNW9Xbt2baSlpaF27drlHQ8RERERUY2j9JgTOzs7XL16tTxjISIiIiKqkZROymfMmIEjR45g9+7dEAShPGMiIiIiIqpRlL7Qc+HChTA0NMTcuXPx/fffo2nTptDT05MrIxKJsHnzZpUHSURERERUnSmdlEvvttK4cWMAKPYhQkRERETVka6WhtxfIlVTOik/ceJEecZBREREVGl1szRB9D/p8GxhpO5QqJpSKilPTU1FUlISTExM0LRp0/KOiYiIiKhSaWOqjzam+uoOg6qxUpPyoqIi/N///R8iIyNlF3fa29tj1apVqFu3boUESERERERU3ZU6MGrbtm2IiIhA/fr14ePjA7FYjIsXL2LevHkVFR8RERERUbVXak/5vn370KpVK+zatQsGBgYAgLlz52Lv3r3IyMiAoaFhhQRJRKoVExODiIgI+Pv7w83NTd3hEBER1Xil9pT/888/8PPzkyXkADBs2DAUFhbi3r175R0bEZWTTZs24fLly9i0aZO6QyEiIiK8JSnPzs5GgwYN5KZJX2dlZZVfVERUrqSfX36OiYiIKoe33mxTJBIV+5pP9SQiIiIiUo233hIxOjpa7kFB2dnZEIlEOHLkCG7evClXViQSYeTIkSoPkoiIiIioOntrUn7w4EEcPHhQYfquXbsUpjEpJyIiIiIqu1KT8i1btlRUHERERERENVapSbmLi0tFxUFEREREVGO99UJPIlKfooJ8dYdQZlUxZqKKEhMTg2nTpiEmJkbdoRBRJfPWMeVEpD4aWto4v3iMytvNff6f7K+q23f8bL1K2yOqTjZt2oTbt28jKyuLD+4iIjnsKSciIqogfEYAEZWESTkRERERkZoxKSciIiIiUjMm5UREREREasaknIiIiIhIzZiUExERERGpGZNyohpIV0tD7i8RERGpF7+RiWqgbpYmaGmih26WJuoORe34MBciIqoM+PAgohqojak+2pjqqzuMSoEPc6GSFBXkQ0NLW91hKK2qxUtE8piUE1GNxoe5UEnK44m6fJouEZWEw1eIiIiIiNSMSTkRERERkZoxKSeiKiEvv1DdIRAREZUbjiknoipBR1sTQz/brvJ2nz17AQB48uyFytvfsThApe0REVH1xZ5yIiIiIiI1U2tPeWZmJpYvX44jR44gIyMDlpaWmDBhArp27VpqvV9++QXHjx9HQkICUlJS0KhRI3zwwQcYP3486tatW0HRExERlQ0f3EVEJVHrUSE4OBhRUVGYPHky1q5dC0tLSwQHByM6OrrUeitWrICBgQGmTZuG9evXY+TIkfj1118xYMAAZGRkVFD0RFQdiDS15f4SlSc+uIuISqK2nvLo6GicOXMGK1euhI+PDwDAzc0NSUlJWLRoETw9PUusu2/fPtSrV0/22sXFBZaWlggMDMT+/fsRGBhY7vETUfVgYNYemU+uonYjG3WHQjUAH9xFRCVRW0/50aNHUadOHbmhKiKRCH5+frh79y7u3LlTYt3XE3IpG5tXX6hPnjxRfbBEVG3pGlmgrqQXdI0s1B0KERHVYGpLym/fvg1LS0toaMiHIJFIAAC3bt0qU3sxMTEAgNatW6smQCIiIiKiCqK24StpaWlo3ry5wnQjIyPZ/LK0NX/+fDRv3hy9evV6p3ji4+PfqV5V4OjoqO4Qyuz8+fPqDqFSqIr7Diif/VdVt0VVxM/fK1XxPcd990pV3HcA959UVdx/qth3ar37ikgkeqd5r8vOzsaECROQnp6Obdu2QUdH551isba2hq6u7jvVJdWrih9I+h/uv6qN+6/q4r6r2rj/qi5l911ubm6JHcFqS8qNjY2L7Q1PT08H8L8e89Lk5OTg008/xfXr17FhwwZYWVmpOkwiIiIionKntjHllpaWSExMRFFRkdx06VhysVhcav3c3FyMHz8ely5dwtq1a9G+fftyi5WIiIiIqDypLSn38fFBRkYGTpw4ITd93759aNGiBSwtLUusm5eXh/Hjx+Pvv/9GWFgYXFxcyjtcIiIiIqJyo7bhK56ennB1dcWcOXOQlpYGc3Nz7Nu3D+fPn0dYWJisXGBgIOLi4pCQkCCbNmnSJJw+fRoTJkyAvr4+Ll26JJtXt25dNG3atCJXhYiIiIjovagtKReJRAgLC8OyZcuwfPlyZGRkwNLSEitXroSXl1epdU+ePAkAWLVqFVatWiU3z8/PD4sWLSq3uImIiIiIVE2td18xMDDAvHnzMG/evBLLbN26VWHa673mRERERERVndrGlBMRERER0StMyomIiIiI1IxJORERERGRmjEpJyIiIiJSMyblRERERERqxqSciIiIiEjNmJQTEREREakZk3IiIiIiIjVjUk5EREREpGZMyomIiIiI1IxJORERERGRmjEpJyIiIiJSMyblRERERERqxqSciIiIiEjNmJQTEREREakZk3IiIiIiIjVjUk5EREREpGZMyiuBmJgYTJs2DTExMeoOhYiIiIjUQEvdARCwadMm3L59G1lZWXBzc1N3OERERERUwdhTXglkZWXJ/SUiIiKimoVJORERERGRmjEpL6O8/EJ1h0BERERE1QzHlJeRjrYmhn62XaVtPnv2AgDw5NkLlbcNADsWB6i8TSIiIiJSHfaUExERERGpGZNyIiIiIiI1Y1JeCYg0teX+EhEREVHNwqS8EjAwaw9tg0YwMGuv7lCIiIiISsWHHpYPXuhZCegaWUDXyELdYRARERG9FR96WD7YU05ERERESuNDD8sHk3IiIiIiIjVjUk5ERERUTfGhh1UHx5QTERERVVN86GHVwZ5yovfEq9CJiIjofbGnnOg98Sp0IiKqSfh8lfLBnnKi98Sr0ImIqCbh81XKB3vKqUbJyy+EjramusMgIiKqsvh8lfLBpJxqlKp2wUtNvdiFiIiopuHwFSIiIiIiNWNSTvSeeMELERERvS8m5UTviRe8EBER0fvimHKi98QLXoiIiOh9saeciIiIKhwfvEYkjz3lREREVOH44DUieewpJyKiKok9rVUbH7xGJI895UREVCWxp5WIqhP2lBMRUZXEntaKk5dfqO4QiKo99pQTEVG5y8svhI62prrDoHfEpyETlT8m5UREVO6qWlIHMLErb3zwGpE8Dl8hIqIqiUld1cYHrxHJY085ERFVSQZm7ZH55CpqN7JRdyj0DvjgNSJ5TMqJiKhKYlJHRNUJh68QEREREakZk3IiIiIiIjVjUk5EREREpGZMyomIiIiI1IxJORERERGRmjEpJyIiIiJSMyblRERERERqxqSciIiIiEjNmJQTEREREakZk3IiIiIiIjVjUk5EREREpGZMyomIiIiI1EytSXlmZibmz58PDw8P2Nraol+/fjh+/LhSdR88eIDx48fD0dERDg4O+Pjjj3Hnzp1yjpiIiIiISPXUmpQHBwcjKioKkydPxtq1a2FpaYng4GBER0eXWi8lJQVDhw7Fo0ePEBISgmXLliE9PR3Dhg3DkydPKih6IiIiIiLV0FLXgqOjo3HmzBmsXLkSPj4+AAA3NzckJSVh0aJF8PT0LLHuhg0bkJGRgd27d6Nhw4YAAHt7e3Tt2hWrV6/G119/XSHrQERERESkCmrrKT969Cjq1KmDrl27yqaJRCL4+fnh7t27pQ5FOXbsGNzd3WUJOQCYmJigS5cuOHr0aLnGTURERESkamrrKb99+zYsLS2hoSH/u0AikQAAbt26BUtLS4V6OTk5ePDgAXr06KEwTyKR4ODBg0hJSUG9evWUikMQBABAXl6e0rEb6msrXbYyyM3NBfTqqDsMpeXm5pZr+1Vp/1W1fQeU7/6rSvsO4P57E/df+eKx83+q2r4D+Nl7XVXbf2XZd9J8U5p/vk4kFDe1AnTv3h3NmzfH2rVr5abfu3cP3bt3x1dffYWhQ4cq1Pvvv//wwQcf4LPPPkNQUJDcvIiICHz55Zc4fPgwWrVqpVQcL168wK1bt959RYiIiIiIykAsFqNOHfkfHmrrKQdeDVd5l3nKzFdW7dq1IRaLoa2trbI2iYiIiIjeJAgC8vPzUbt2bYV5akvKjY2NkZaWpjA9PT0dAGBkZFRsPSMjI4hEomLrSqcZGxsrHYeGhobCLxUiIiIiovKgp6dX7HS1XehpaWmJxMREFBUVyU2XDiURi8XF1tPT04OFhUWxQ05u3bqFunXrKj2enIiIiIioMlBbUu7j44OMjAycOHFCbvq+ffvQokWLYi/ylPL29saZM2eQnJwsm5aWloaTJ0/Kbq9IRERERFRVqO1CT0EQMGLECCQkJGDmzJkwNzfHvn37sG/fPoSFhcHLywsAEBgYiLi4OCQkJMjqPnv2DH379kWDBg0wYcIEaGlpYfXq1bh37x727t0LMzMzdawSEREREdE7UVtSDgAvX77EsmXL8NtvvyEjIwOWlpaYMGECvL29ZWWKS8qBV3dpCQkJQWxsLARBgKOjI2bNmoXWrVtX9GoQEREREb0XtSblRERERESkxjHlRERERET0CpNyIiIiIiI1Y1JeSYWGhkIikSAjI6NclyORSBAaGlquy6iKKmr7v87LywuzZ8+usOVR6ZR9D4SHh+PYsWMqX/6ePXsgkUjw8OFDlbdNVB1ERUWhV69esLGxkfusbNq0CV27dkW7du0gkUjUHGXNxNzi3aj1iZ5E9D8rV66EgYGBusOgMgoPD4e3t7fcBepEVL5SUlLw+eefo0uXLvj666+hra2NBg0a4Pr161i4cCGGDBmCDz/8EFpaTHOo6uC7laiSaNu2rbpDICKqEu7du4f8/Hz06dMHzs7Osul37twBAAwcOBDt2rVTybLy8vKgo6OjkraISsPhK5Xcw4cPMXbsWDg4OMDV1RVfffUVMjMzZfOzsrKwaNEidO7cGdbW1ujcuTNCQkKQk5Mj186LFy8wZ84cuLq6wsHBAaNHj8bdu3flykRFRUEikeDSpUsKcSxcuBAODg54+fJluaxnZVXa9n/48CEkEgn27NmjUO/NU3epqamYO3cuPD09YW1tjQ4dOmDYsGG4fPmyrMybw1ekwxfOnTuHefPmwdXVFa6urggODsZ///2nsMx9+/ahf//+sLOzg6OjI8aPH4979+7Jlbl27RrGjh2LDh06wNraGh988AHGjx+P9PR0WZkdO3agT58+sLe3R/v27dGrVy+Eh4e/8zas6pKTkzFlyhS0b98e7u7u+Pzzz/HixQsAr/bzixcvsHfvXkgkEkgkEtk+lA5/uXnzJj799FM4ODjAzc0NS5cuRVFREeLj4zFs2DDY29ujW7du2LdvnxrXsup43+1648YNjB07Fo6OjrC1tUX//v1x9OhRuTKq/ux9+eWXcHFxUTguA0C/fv0QEBCgkm1TncTExMj2o729vez2yAAwe/ZsDB06FAAwceJESCQSBAYGIjAwEDNnzgTwaru+/nkEgOjoaAwbNgwODg6wt7fHiBEjcOXKFbnlzp49G05OTrh27RoCAwNhb2+PefPmVdBaV37Sz9/169dLzU2Kk5iYiEmTJsHV1RXW1tbo06cPoqKi5Mqkpqbiq6++Qs+ePWFvbw8PDw+MGTMG165dkytXWFiIsLAwdO/eHba2tnB2doavry92794tV+7ixYsYM2YMnJycYGtrC39/f5w+fVo1G6McsKe8kgsODkafPn0wYsQIXL58GWFhYfj3338RHh6OoqIijBs3DhcuXMCECRNga2srK5OQkIANGzZAJBKhqKgIn376KS5fvoyJEyeiXbt2OH/+PD7++GO5ZfXo0QMhISHYsWMH7O3tZdNzcnKwd+9efPTRRzVueEVp278sZs6ciQcPHmDq1Klo0qQJ0tLScPnyZaSlpb21rvQU7dKlS/Hvv//i+++/x8yZM7FlyxZZmRUrVmD16tUYPHgwJk+ejJcvXyIsLAxDhgzB/v370aBBA2RmZmL06NFo27Ytvv32WxgaGuLp06f466+/kJubCwA4ePAg5s+fj08++QQuLi4oLCzEvXv38PTp0zKtb3USHByMXr16wd/fHwkJCVi2bBmAVz9Ud+3ahVGjRsHZ2Rnjx48HANStW1eu/pQpU9CvXz8EBgbixIkTCA8PR15eHv744w8EBQVh3Lhx2LZtG2bPng2JRII2bdpU+DpWRe+yXW/fvo2hQ4eicePG+Prrr6Gvr4+IiAgEBwcjJCQEvr6+cstQ1WcvMDAQEREROHjwIAYMGCCre+nSJVy7dg3Lly+vqM1WJZw9exZBQUGws7NDSEgIAGDjxo0YNWoUNmzYgPHjx8PGxgbffPMNZsyYAWdnZ9l308GDB7F69WqEhISgefPmss9jZGQk5s6di969e2P06NEoKirCxo0bZfvm9bHnubm5mDhxIgIDAzF+/Hhoa2tX/Eao5Mr63Xjz5k0MGTIELVu2xJdffgljY2McOXIEM2bMQE5ODgYOHAjg1dPZNTU1MWnSJNSrVw8vXrzAvn37MHjwYOzdu1f2tPf169cjPDwckyZNQrt27ZCTk4M7d+7IdTCdPn0a48aNg4uLC7777jvo6uoiIiICY8eORXh4ODw8PMp/Q5WVQJXSihUrBLFYLCxZskRu+tq1awWxWCxcuHBB+OOPPwSxWCxs3bpVrsymTZsEsVgsnDp1ShAEQVZu27ZtcuVWrlwpiMViYcWKFbJpoaGhgrW1tZCSkiKbFhERIYjFYiEhIUHVq1lpKbP9k5KSBLFYLOzevVuh/pvb1d7eXti0aVOpy+zSpYswa9Ys2evdu3cLYrFY+Pbbb+XKrVu3ThCLxcJ///0nCIIgPHr0SGjbtq0QEhIiV+7JkyeCnZ2dsGjRIkEQBOHKlSuCWCwWbty4UWIMX3/9tdC3b99S46wppO+BjRs3yk3/v//7P8HGxkYoKioSBEEQHB0d5fbbm/W3bNkim1ZUVCR4eXkJYrFYOHfunGz68+fPhTZt2giLFy+WTZPu/6SkJBWvWdX2Ptt18uTJgp2dnZCcnCxX18/PT/Dw8BAKCwsFQVD9Z08QBCEwMFDw8/OTKzdjxgyhY8eOQl5e3vtskmpnwIABQqdOnYScnBzZtOzsbKFjx46Cv7+/IAiCEBMTI4jFYuHo0aNydaX77vr167JpmZmZgpOTkzBp0iS5sllZWUKnTp2EiRMnyqbNmjVLEIvFwv79+8tj1ao8Zb4bBUHxO3DUqFFCly5dhMzMTLl648ePF9zd3WWfvTcVFBQIeXl5Qrdu3YQFCxbIpo8dO1YYP358qbF269ZNGDhwoFzb0s97v379lFvhCsbhK5Vc7969i3197tw5xMbGAgA++ugjuTLS3h7pfOkpvz59+siVe7MeAAwePBiCIMidAvr555/h7OwMsVj8HmtSNZW2/cvC1tYW69atw08//YQbN26gsLBQ6bpdu3aVey3t0Xn8+DEA4K+//kJBQQE++ugjFBQUyP7Vq1cPbdu2lcXavHlzGBkZYc6cOdi7dy+SkpKKjfPmzZuYN28eTp8+LRumUZN5eXnJvZZIJMjNzcWzZ8+Uqt+5c2fZ/0UiEVq2bInatWvDyclJNt3Y2Bh169aV7VN6u3fZrrGxsXB3d0f9+vXl6n700Ud4+vQp/vnnH7llqOqzB7x6OvW1a9dkwyVSU1Nx5MgR+Pv7syf2NVlZWbh69Sq6d+8OXV1d2XQ9PT306NEDV65cQXZ2dpnavHTpEjIyMhT2k7a2NlxcXIo9nvv4+Lz3ulRnZfluzM3NRWxsLLp16wYdHR25feDp6Ylnz57JhtMKgoBffvkF/fr1g5OTE9q2bQtra2vcu3dPbsitra0toqOjsXjxYpw7d07hPXH//n3cu3cPH374IYqKimTLKywsRKdOnXDt2rW3DrdRBw5fqeRe//J4/fXz58+RkZEBHR0dGBoaypUxMjKCjo6ObGhEWloadHV1Fco1aNCg2OX17NkTO3fuRFBQEK5cuVKjT6+Wtv3LYvny5QgLC8OWLVsQEhICY2Nj9OrVC1OnTlXYL28yNjaWey294Eg65ESaHPbt27fY+ubm5gCAOnXqYOvWrQgLC8N3332HjIwMmJubIyAgAKNGjYJIJIKvry/y8/MRGRmJyMhIiEQiODo6Yvr06bCzsyvTOlcXb9v+b2NkZCT3WltbW6FNabvKtknvtl3T09MVPtMAYGpqCgAKw8lU9dkDXv24a9KkCXbs2AFbW1tERkaiqKgIgwYNKmENa6aMjAwIgiDbJ69r0KABioqKynyrWul+kg4xe5NIJJJ7bWBggFq1apVpGTVNWb4b09LSUFBQgI0bN2Ljxo3Ftiett2HDBnz//fcICAjA5MmTYWJiApFIhLlz58odHz/55BPo6enhwIED+Omnn6CtrQ0PDw/MmDEDrVq1ku3zBQsWYMGCBcUuMz09HbVr1y77ypcjJuWV3LNnz+Te/NI3momJCTQ0NJCXl4eMjAy5xC49PR15eXmyLxRjY2Pk5uYqlCtpnHBgYCAOHDiAP//8E4cOHYKpqWmN7TUobftLe3Hy8vLk6hR3UKpbty7mzp2LuXPn4t9//8Vvv/2GpUuXIjMzE4sXL36vGE1MTAAAq1atQsOGDRXmv37XAIlEgh9//BGCICAhIQE///wzQkJCYGhoKBvrOnDgQAwcOBDZ2dmIjY3FsmXLMHr0aJw4cUIhESKqSoyNjYs9w5GcnCybXxZl+expampiyJAhCA0NxWeffYadO3eia9euxdaryQwNDSESiWT75HVPnz6FhobGWzsy3iTdT1999RVsbGzeWv7NJJ0Ulfbd+CZDQ0NoaGigX79+GDx4cLHttWjRAsCrawJcXV0VLq5NS0uT2+9aWloICgpCUFAQMjIycPr0aSxZsgRjxozBiRMnZHGMHz9e4WynVHE/0NWNSXkld+jQIVhZWcm9BgBnZ2e8fPkS69evx4EDBzBs2DBZmQMHDgAA3NzcAACurq5Yv349oqKi5K7yl5Z7k62tLezs7LBmzRrEx8dj7NixNfb0amnbv379+tDV1UVCQoJcnePHj5faZuPGjTFy5EgcP34cN2/efO8YO3bsCE1NTTx8+FDpe2WLRCJYWVlh3rx5iIyMLDaOWrVqoXPnznj+/Dlmz56NR48eMSkvho6OTrF31aDKx83NDSdOnJBLKARBQFRUFBo2bIiWLVuWqb2yfvYGDhyIlStXYtq0aXj06BEWLlz4TutRnenr68POzg6//fYbZsyYIev8yM3Nxe+//w47O7sy92K3b98eBgYGuHv3ruyuLfR+SvtufFOtWrXg7OyMGzduoE2bNqXeO14kEinkG6dOncKTJ0/QtGnTYusYGhqiV69euHv3LkJDQ5GRkYEWLVrAwsICCQkJmDx58rusolowKa/kDh06BE1NTTg7O+PKlStYtWoVPD094eDgAEEQ4O7ujpCQELx48QK2trayMh4eHujYsSMAwMPDA87OzggJCUFmZqbs7iv79+8vcbnDhg3DzJkzoaWlBX9//4pa3UqntO0PvBqnv3v3bjRt2hRWVla4cuUKDh48KNfGixcvMGLECHz44Ydo2bIlatWqhfPnz+PChQsYNWrUe8doYWGB8ePHY8mSJUhKSoK7uzsMDAyQnJyMCxcuoGXLlhg2bBhOnjyJn3/+Gd7e3jA3N0dhYSGioqJkY+wAYO7cudDT00P79u1hamqKJ0+eYO3atTAzM5Nd9U7yWrdujXPnzuGPP/5AvXr1YGJiIjdsgSqPCRMm4OTJkxgxYgTGjx8PfX197Nq1C/Hx8ViyZEmZe0iV/exJGRsbo0+fPvjll19gaWkJV1dXVa9itTB16lQEBQVh5MiRGD16NARBwMaNG5GamoqlS5eWub3atWvjiy++wNy5c5Geng4fHx/ZWZP4+Hjo6OhgypQpql+Rauxt341v+uKLLxAQEIDAwEAMGjQIZmZmyMjIwN27d3H16lXZLYQ9PT2xZs0ahIaGwsnJCQkJCQgPD1c4ozRu3DiIxWJYW1vDxMQE9+/fx86dO2FnZyfrPPq///s/jBs3Dp988gn69u0LU1NTPH/+HAkJCUhOTsY333xTvhvpHTApr+RWrVqFZcuWYfPmzdDW1ka/fv0wa9YsAK9+UYaFhWHFihXYtWsXVq5cCVNTUwwfPhyTJk2SfcFoaGhg9erVWLhwIdatW4f8/Hy0b98e69atQ8+ePYtdbvfu3fHFF1/U+NOrpW1/4NUt00QiEdavX4+srCy4urpizZo1cqfLdHV1YWNjg7179+LRo0coKipCkyZNMHnyZAQFBakkzuDgYLRq1Qrbtm3Dnj17UFhYiAYNGsDe3h62trYAgGbNmsHAwADh4eF4+vQpdHV10apVK/z444/w9PQEADg5OWHPnj04fPgwMjIyULduXbi6umLSpEl8eEYJPv/8c3z11VeYNGkScnNz4efnh0WLFqk7LCpGq1at8PPPP2PZsmX48ssvkZ+fD4lEglWrVr3zE1mV+ey9rnfv3vjll1/YY1sKNzc3/PTTTwgNDZXdd9zGxgabNm2Su5C3LPr37w8zMzOsX78ec+bMQU5ODurXrw9ra+sSh1RQyd723fgmKysr7NmzB6tWrcKSJUuQlpYGIyMjtGzZUi4PGT9+PLKysrBr1y6sX78ebdq0wQ8//CD33A8AcHFxwe+//45du3YhMzMTDRo0gLe3NyZOnCgr4+HhgZ07d2LNmjX45ptv8PLlS5iYmMDKygp+fn6q3ygqIBIEQVB3EFT5/P7775g4cSK2bt0KFxcXdYdDRFQtzJ8/H3v27MGpU6dq3HMfqOoLDQ3FypUrce7cuTKP7ae3Y085ybl79y4eP36MxYsXw97engk5EZEKXL16FYmJidi1axdGjhzJhJyIFDApJzlfffUVLl68iHbt2smepEZERO9nwIABqFWrFrp27VrirfmIqGbj8BUiIiIiIjXjEz2JiIiIiNSMSTkRERERkZoxKSciIiIiUjMm5UREVOEkEglmz56t7jCIiCoNJuVERNXIqVOnIJFI8MMPPyjMu3jxIiQSCaytrZGdna0wPygoCFZWVkhNTa2ASImI6HVMyomIqhFHR0doaWkhNjZWYV5cXBy0tLSQn5+Pixcvys0rKCjAhQsX0Lp1a9StW7eiwiUiov+PSTkRUTVSu3Zt2NjY4OrVqwq94XFxcXB3d4epqalC0n716lVkZWXB1dX1vWPIyclBQUHBe7dDRFSTMCknIqpmXF1dkZ+fjwsXLsimSXvCnZ2d4ezsrJCUx8XFyeoCwM2bNzFhwgS4urrCxsYGvXr1wrp161BYWChXb/bs2ZBIJEhNTcXnn38Od3d32Nvb48mTJwCA27dvIygoSPaE4BkzZiAlJaXYuPft24cBAwbAyckJ9vb26Nq1K6ZPn87hNERUI/CJnkRE1YyrqyvWrFmDuLg4dOzYEcD/esJdXFxgYGCA7777DllZWdDX1wfwKikXiURwdnbG1atXERgYCC0tLQQEBKB+/fo4efIklixZgps3b2Lp0qUKyxw1ahTq16+P8ePHy9pNSkpCQEAA8vLyEBAQgMaNG+PkyZMYM2aMQv39+/dj1qxZcHJywqRJk6Cnp4fHjx/j1KlTSElJ4ZAaIqr2mJQTEVUz7du3h7a2tlxveFxcHPT19WFtbY06derIetI9PDxkvegSiQTGxsYYN24c8vLysHPnTlhZWQEAhg0bhilTpuDgwYMYMGAAOnToILfM1q1bY8mSJXLTFixYgPT0dGzevBlubm4AgICAAAQHB+P69etyZY8ePYratWtj8+bN0NL631fTlClTVLlpiIgqLQ5fISKqZvT09GBnZ4f4+HhkZWUBeJWUt2/fHlpaWmjVqhXq1asnG7Ly+njylJQUXLx4EV5eXrKEHABEIhHGjRsH4FUC/aagoCC510VFRThx4gSsra1lCbm0neJ6yuvUqYOcnBz88ccfEATh/TcCEVEVw6SciKgako4rP3/+vNx4ciknJydZT7o0OXdxccHDhw8BAJaWlgpttmrVChoaGkhKSlKY17x5c7nXKSkpyMrKQsuWLRXKFtf2J598AjMzM0yYMAFubm6YOHEifvnlF7x8+VL5lSYiqsKYlBMRVUPSCzbj4uJkPeGvJ+UuLi6Ij49HZmYm4uLioKGhAWdn53fupa5Vq5bca2k7IpFIqfrNmzfH4cOHER4eDj8/Pzx69Ahz585Fz5498eDBg3eKiYioKuGYciKiasjBwQG6urqIjY2FgYEB9PT0YGNjI5vv7OyMgoICxMXF4cKFC2jTpg2MjIxgYWEBALhz545Cm3fv3kVRUZGsTGnq1asHfX19JCYmKswrrm0A0NHRgaenJzw9PQEA0dHRGDt2LDZu3IivvvpKqfUmIqqq2FNORFQN6ejowN7eHteuXcPJkydhb28PHR0d2XyxWAxjY2Ns2LBBdlcW4FUy7eDggJMnT+LWrVuy8oIgIDw8HADg4+Pz1uVramqiS5cuiI+PR0xMjFw769evVyhf3G0P27ZtCwBIT09Xcq2JiKou9pQTEVVTrq6uiI2NxcWLFzFx4kS5eSKRCE5OTjh27JisrNScOXMQGBiIgIAADB06FKampjh58iROnz6NDz/8UOHOKyWZMmUKTp06hXHjxmHYsGFo1KgRTp48WWwCHhQUBAMDAzg7O6Nx48bIyMjA3r17IRKJ0Ldv3/fYCkREVQOTciKiaur1RFvaE/46Z2dnHDt2DJqamnBycpJNt7Gxwc6dO7FixQr8/PPPyMrKgoWFBWbMmIHRo0crvfymTZti+/btCAkJwbZt26Cjo4NOnTph8eLFcHd3lys7ZMgQ/Prrr9i1axfS09NhbGyMNm3aYO7cuXJ3byEiqq5EAu89RURERESkVhxTTkRERESkZkzKiYiIiIjUjEk5EREREZGaMSknIiIiIlIzJuVERERERGrGpJyIiIiISM2YlBMRERERqRmTciIiIiIiNWNSTkRERESkZkzKiYiIiIjU7P8BmMWvKlQk2R4AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 864x504 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"train = train.reset_index(drop=True) # We must do this in order to preserve the ordering of emails to labels for words_in_texts\n",
"\n",
"words = [\"body\", \"business\", \"html\", \"money\", \"offer\", \"please\"]\n",
"text = train[\"email\"]\n",
"indicator = words_in_texts(words, text)\n",
"\n",
"df = pd.DataFrame(data = indicator, columns = words)\n",
"df['type'] = train['spam'].map({0: \"ham\", 1: \"spam\"})\n",
"melted_df = df.melt('type')\n",
"\n",
"plt.figure(figsize = (12, 7))\n",
"sns.barplot(x=\"variable\", y=\"value\", hue=\"type\", data=melted_df)\n",
"plt.ylim(0, 1)\n",
"plt.xlabel('Words')\n",
"plt.ylabel('Proportion of Emails')\n",
"plt.title('Frequency of Words in SPam/Ham Emails per Word')"
]
},
{
"cell_type": "markdown",
"metadata": {
"nbgrader": {
"grade": false,
"grade_id": "q3b",
"locked": true,
"schema_version": 2,
"solution": false
}
},
"source": [
"<!-- END QUESTION -->\n",
"\n",
"\n",
"\n",
"When the feature is binary, it makes sense to compare its proportions across classes (as in the previous question). Otherwise, if the feature can take on numeric values, we can compare the distributions of these values for different classes. "
]
},
{