forked from haoel/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
uniquePaths.cpp
64 lines (57 loc) · 1.61 KB
/
uniquePaths.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Source : https://oj.leetcode.com/problems/unique-paths/
// Author : Hao Chen
// Date : 2014-06-25
/**********************************************************************************
*
* A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
*
* The robot can only move either down or right at any point in time. The robot is trying to reach
* the bottom-right corner of the grid (marked 'Finish' in the diagram below).
*
* How many possible unique paths are there?
*
* Above is a 3 x 7 grid. How many possible unique paths are there?
*
* Note: m and n will be at most 100.
*
**********************************************************************************/
#include <stdio.h>
#include <stdlib.h>
void printMatrix(int*a, int m, int n);
int uniquePaths(int m, int n) {
int* matrix = new int[m*n];
printMatrix(matrix, m, n);
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
if(i==0 || j==0){
matrix[i*n+j]=1;
}else{
matrix[i*n+j] = matrix[(i-1)*n+j] + matrix[i*n+j-1];
}
}
}
printMatrix(matrix, m, n);
int u = matrix[m*n-1];
delete[] matrix;
return u;
}
void printMatrix(int*a, int m, int n)
{
for (int i=0; i<m; i++){
for (int j=0; j<n; j++){
printf("%4d ", a[i*n+j]);
}
printf("\n");
}
printf("\n");
}
int main(int argc, char** argv)
{
int m=3, n=7;
if( argc>2){
m = atoi(argv[1]);
n = atoi(argv[2]);
}
printf("uniquePaths=%d\n", uniquePaths(m,n));
return 0;
}