-
Notifications
You must be signed in to change notification settings - Fork 1
/
README.md~
48 lines (32 loc) · 1.43 KB
/
README.md~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Multi-linear Gaussian Process
A Gaussian process model that learns high-order structure in the data using multi-linear (tensor) kernel.
[![Build Status](https://travis-ci.org/voxpelli/node-github-publish.svg?branch=master)](https://travis-ci.org/voxpelli/node-github-publish)
[![Coverage Status](https://coveralls.io/repos/voxpelli/node-github-publish/badge.svg)](https://coveralls.io/r/voxpelli/node-github-publish)
[![Dependency Status](https://gemnasium.com/voxpelli/node-github-publish.svg)](https://gemnasium.com/voxpelli/node-github-publish)
Multilinear Gaussian process regression, implemented in MATLAB.
See details in our paper [Tensor Regression meets Gaussian Process](https://arxiv.org/abs/1711.00073)
![](tlstm.png "Graphical Model for MLGP")
# File
**test example**
```matlab
run test_mlgp.m
```
## Directory
* **reader.py**
read the data into train/valid/test datasets, normalize the data if needed
* **model.py**
seq2seq model for sequence prediction
* **trnn.py**
tensor-train lstm cell and corresponding tensor train contraction
* **trnn_imply.py**
forward step in tensor-train rnn, feed previous predictions as input
## Citation
If you think the repo is useful, we kindly ask you to cite our work at
```
@article{yu2017long,
title={Long-term forecasting using tensor-train RNNs},
author={Yu, Rose and Zheng, Stephan and Anandkumar, Anima and Yue, Yisong},
journal={arXiv preprint arXiv:1711.00073},
year={2017}
}
```