forked from Meinersbur/isl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
isl_bernstein.c
583 lines (508 loc) · 16 KB
/
isl_bernstein.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
/*
* Copyright 2006-2007 Universiteit Leiden
* Copyright 2008-2009 Katholieke Universiteit Leuven
* Copyright 2010 INRIA Saclay
*
* Use of this software is governed by the MIT license
*
* Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
* Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
* and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
* B-3001 Leuven, Belgium
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
*/
#include <isl_ctx_private.h>
#include <isl_map_private.h>
#include <isl/set.h>
#include <isl_seq.h>
#include <isl_morph.h>
#include <isl_factorization.h>
#include <isl_vertices_private.h>
#include <isl_polynomial_private.h>
#include <isl_options_private.h>
#include <isl_vec_private.h>
#include <isl_bernstein.h>
struct bernstein_data {
enum isl_fold type;
isl_qpolynomial *poly;
int check_tight;
isl_cell *cell;
isl_qpolynomial_fold *fold;
isl_qpolynomial_fold *fold_tight;
isl_pw_qpolynomial_fold *pwf;
isl_pw_qpolynomial_fold *pwf_tight;
};
static isl_bool vertex_is_integral(__isl_keep isl_basic_set *vertex)
{
isl_size nvar;
isl_size nparam;
int i;
nvar = isl_basic_set_dim(vertex, isl_dim_set);
nparam = isl_basic_set_dim(vertex, isl_dim_param);
if (nvar < 0 || nparam < 0)
return isl_bool_error;
for (i = 0; i < nvar; ++i) {
int r = nvar - 1 - i;
if (!isl_int_is_one(vertex->eq[r][1 + nparam + i]) &&
!isl_int_is_negone(vertex->eq[r][1 + nparam + i]))
return isl_bool_false;
}
return isl_bool_true;
}
static __isl_give isl_qpolynomial *vertex_coordinate(
__isl_keep isl_basic_set *vertex, int i, __isl_take isl_space *space)
{
isl_size nvar;
isl_size nparam;
isl_size total;
int r;
isl_int denom;
isl_qpolynomial *v;
isl_int_init(denom);
nvar = isl_basic_set_dim(vertex, isl_dim_set);
nparam = isl_basic_set_dim(vertex, isl_dim_param);
total = isl_basic_set_dim(vertex, isl_dim_all);
if (nvar < 0 || nparam < 0 || total < 0)
goto error;
r = nvar - 1 - i;
isl_int_set(denom, vertex->eq[r][1 + nparam + i]);
isl_assert(vertex->ctx, !isl_int_is_zero(denom), goto error);
if (isl_int_is_pos(denom))
isl_seq_neg(vertex->eq[r], vertex->eq[r], 1 + total);
else
isl_int_neg(denom, denom);
v = isl_qpolynomial_from_affine(space, vertex->eq[r], denom);
isl_int_clear(denom);
return v;
error:
isl_space_free(space);
isl_int_clear(denom);
return NULL;
}
/* Check whether the bound associated to the selection "k" is tight,
* which is the case if we select exactly one vertex (i.e., one of the
* exponents in "k" is exactly "d") and if that vertex
* is integral for all values of the parameters.
*
* If the degree "d" is zero, then there are no exponents.
* Since the polynomial is a constant expression in this case,
* the bound is necessarily tight.
*/
static isl_bool is_tight(int *k, int n, int d, isl_cell *cell)
{
int i;
if (d == 0)
return isl_bool_true;
for (i = 0; i < n; ++i) {
int v;
if (!k[i])
continue;
if (k[i] != d)
return isl_bool_false;
v = cell->ids[n - 1 - i];
return vertex_is_integral(cell->vertices->v[v].vertex);
}
return isl_bool_false;
}
static isl_stat add_fold(__isl_take isl_qpolynomial *b, __isl_keep isl_set *dom,
int *k, int n, int d, struct bernstein_data *data)
{
isl_qpolynomial_fold *fold;
isl_bool tight;
fold = isl_qpolynomial_fold_alloc(data->type, b);
tight = isl_bool_false;
if (data->check_tight)
tight = is_tight(k, n, d, data->cell);
if (tight < 0)
return isl_stat_error;
if (tight)
data->fold_tight = isl_qpolynomial_fold_fold_on_domain(dom,
data->fold_tight, fold);
else
data->fold = isl_qpolynomial_fold_fold_on_domain(dom,
data->fold, fold);
return isl_stat_ok;
}
/* Extract the coefficients of the Bernstein base polynomials and store
* them in data->fold and data->fold_tight.
*
* In particular, the coefficient of each monomial
* of multi-degree (k[0], k[1], ..., k[n-1]) is divided by the corresponding
* multinomial coefficient d!/k[0]! k[1]! ... k[n-1]!
*
* c[i] contains the coefficient of the selected powers of the first i+1 vars.
* multinom[i] contains the partial multinomial coefficient.
*/
static isl_stat extract_coefficients(isl_qpolynomial *poly,
__isl_keep isl_set *dom, struct bernstein_data *data)
{
int i;
int d;
isl_size n;
isl_ctx *ctx;
isl_qpolynomial **c = NULL;
int *k = NULL;
int *left = NULL;
isl_vec *multinom = NULL;
n = isl_qpolynomial_dim(poly, isl_dim_in);
if (n < 0)
return isl_stat_error;
ctx = isl_qpolynomial_get_ctx(poly);
d = isl_qpolynomial_degree(poly);
isl_assert(ctx, n >= 2, return isl_stat_error);
c = isl_calloc_array(ctx, isl_qpolynomial *, n);
k = isl_alloc_array(ctx, int, n);
left = isl_alloc_array(ctx, int, n);
multinom = isl_vec_alloc(ctx, n);
if (!c || !k || !left || !multinom)
goto error;
isl_int_set_si(multinom->el[0], 1);
for (k[0] = d; k[0] >= 0; --k[0]) {
int i = 1;
isl_qpolynomial_free(c[0]);
c[0] = isl_qpolynomial_coeff(poly, isl_dim_in, n - 1, k[0]);
left[0] = d - k[0];
k[1] = -1;
isl_int_set(multinom->el[1], multinom->el[0]);
while (i > 0) {
if (i == n - 1) {
int j;
isl_space *space;
isl_qpolynomial *b;
isl_qpolynomial *f;
for (j = 2; j <= left[i - 1]; ++j)
isl_int_divexact_ui(multinom->el[i],
multinom->el[i], j);
b = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
n - 1 - i, left[i - 1]);
b = isl_qpolynomial_project_domain_on_params(b);
space = isl_qpolynomial_get_domain_space(b);
f = isl_qpolynomial_rat_cst_on_domain(space,
ctx->one, multinom->el[i]);
b = isl_qpolynomial_mul(b, f);
k[n - 1] = left[n - 2];
if (add_fold(b, dom, k, n, d, data) < 0)
goto error;
--i;
continue;
}
if (k[i] >= left[i - 1]) {
--i;
continue;
}
++k[i];
if (k[i])
isl_int_divexact_ui(multinom->el[i],
multinom->el[i], k[i]);
isl_qpolynomial_free(c[i]);
c[i] = isl_qpolynomial_coeff(c[i - 1], isl_dim_in,
n - 1 - i, k[i]);
left[i] = left[i - 1] - k[i];
k[i + 1] = -1;
isl_int_set(multinom->el[i + 1], multinom->el[i]);
++i;
}
isl_int_mul_ui(multinom->el[0], multinom->el[0], k[0]);
}
for (i = 0; i < n; ++i)
isl_qpolynomial_free(c[i]);
isl_vec_free(multinom);
free(left);
free(k);
free(c);
return isl_stat_ok;
error:
isl_vec_free(multinom);
free(left);
free(k);
if (c)
for (i = 0; i < n; ++i)
isl_qpolynomial_free(c[i]);
free(c);
return isl_stat_error;
}
/* Perform bernstein expansion on the parametric vertices that are active
* on "cell".
*
* data->poly has been homogenized in the calling function.
*
* We plug in the barycentric coordinates for the set variables
*
* \vec x = \sum_i \alpha_i v_i(\vec p)
*
* and the constant "1 = \sum_i \alpha_i" for the homogeneous dimension.
* Next, we extract the coefficients of the Bernstein base polynomials.
*/
static isl_stat bernstein_coefficients_cell(__isl_take isl_cell *cell,
void *user)
{
int i, j;
struct bernstein_data *data = (struct bernstein_data *)user;
isl_space *space_param;
isl_space *space_dst;
isl_qpolynomial *poly = data->poly;
isl_size n_in;
unsigned nvar;
int n_vertices;
isl_qpolynomial **subs;
isl_pw_qpolynomial_fold *pwf;
isl_set *dom;
isl_ctx *ctx;
n_in = isl_qpolynomial_dim(poly, isl_dim_in);
if (n_in < 0)
goto error;
nvar = n_in - 1;
n_vertices = cell->n_vertices;
ctx = isl_qpolynomial_get_ctx(poly);
if (n_vertices > nvar + 1 && ctx->opt->bernstein_triangulate)
return isl_cell_foreach_simplex(cell,
&bernstein_coefficients_cell, user);
subs = isl_alloc_array(ctx, isl_qpolynomial *, 1 + nvar);
if (!subs)
goto error;
space_param = isl_basic_set_get_space(cell->dom);
space_dst = isl_qpolynomial_get_domain_space(poly);
space_dst = isl_space_add_dims(space_dst, isl_dim_set, n_vertices);
for (i = 0; i < 1 + nvar; ++i)
subs[i] =
isl_qpolynomial_zero_on_domain(isl_space_copy(space_dst));
for (i = 0; i < n_vertices; ++i) {
isl_qpolynomial *c;
c = isl_qpolynomial_var_on_domain(isl_space_copy(space_dst),
isl_dim_set, 1 + nvar + i);
for (j = 0; j < nvar; ++j) {
int k = cell->ids[i];
isl_qpolynomial *v;
v = vertex_coordinate(cell->vertices->v[k].vertex, j,
isl_space_copy(space_param));
v = isl_qpolynomial_add_dims(v, isl_dim_in,
1 + nvar + n_vertices);
v = isl_qpolynomial_mul(v, isl_qpolynomial_copy(c));
subs[1 + j] = isl_qpolynomial_add(subs[1 + j], v);
}
subs[0] = isl_qpolynomial_add(subs[0], c);
}
isl_space_free(space_dst);
poly = isl_qpolynomial_copy(poly);
poly = isl_qpolynomial_add_dims(poly, isl_dim_in, n_vertices);
poly = isl_qpolynomial_substitute(poly, isl_dim_in, 0, 1 + nvar, subs);
poly = isl_qpolynomial_drop_dims(poly, isl_dim_in, 0, 1 + nvar);
data->cell = cell;
dom = isl_set_from_basic_set(isl_basic_set_copy(cell->dom));
data->fold = isl_qpolynomial_fold_empty(data->type,
isl_space_copy(space_param));
data->fold_tight = isl_qpolynomial_fold_empty(data->type, space_param);
if (extract_coefficients(poly, dom, data) < 0) {
data->fold = isl_qpolynomial_fold_free(data->fold);
data->fold_tight = isl_qpolynomial_fold_free(data->fold_tight);
}
pwf = isl_pw_qpolynomial_fold_alloc(data->type, isl_set_copy(dom),
data->fold);
data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, pwf);
pwf = isl_pw_qpolynomial_fold_alloc(data->type, dom, data->fold_tight);
data->pwf_tight = isl_pw_qpolynomial_fold_fold(data->pwf_tight, pwf);
isl_qpolynomial_free(poly);
isl_cell_free(cell);
for (i = 0; i < 1 + nvar; ++i)
isl_qpolynomial_free(subs[i]);
free(subs);
return isl_stat_ok;
error:
isl_cell_free(cell);
return isl_stat_error;
}
/* Base case of applying bernstein expansion.
*
* We compute the chamber decomposition of the parametric polytope "bset"
* and then perform bernstein expansion on the parametric vertices
* that are active on each chamber.
*
* If the polynomial does not depend on the set variables
* (and in particular if the number of set variables is zero)
* then the bound is equal to the polynomial and
* no actual bernstein expansion needs to be performed.
*/
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_base(
__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
isl_bool *tight)
{
int degree;
isl_size nvar;
isl_space *space;
isl_vertices *vertices;
isl_bool covers;
nvar = isl_basic_set_dim(bset, isl_dim_set);
if (nvar < 0)
bset = isl_basic_set_free(bset);
if (nvar == 0)
return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
degree = isl_qpolynomial_degree(poly);
if (degree < -1)
bset = isl_basic_set_free(bset);
if (degree <= 0)
return isl_qpolynomial_cst_bound(bset, poly, data->type, tight);
space = isl_basic_set_get_space(bset);
space = isl_space_params(space);
space = isl_space_from_domain(space);
space = isl_space_add_dims(space, isl_dim_set, 1);
data->pwf = isl_pw_qpolynomial_fold_zero(isl_space_copy(space),
data->type);
data->pwf_tight = isl_pw_qpolynomial_fold_zero(space, data->type);
data->poly = isl_qpolynomial_homogenize(isl_qpolynomial_copy(poly));
vertices = isl_basic_set_compute_vertices(bset);
if (isl_vertices_foreach_disjoint_cell(vertices,
&bernstein_coefficients_cell, data) < 0)
data->pwf = isl_pw_qpolynomial_fold_free(data->pwf);
isl_vertices_free(vertices);
isl_qpolynomial_free(data->poly);
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
covers = isl_pw_qpolynomial_fold_covers(data->pwf_tight, data->pwf);
if (covers < 0)
goto error;
if (tight)
*tight = covers;
if (covers) {
isl_pw_qpolynomial_fold_free(data->pwf);
return data->pwf_tight;
}
data->pwf = isl_pw_qpolynomial_fold_fold(data->pwf, data->pwf_tight);
return data->pwf;
error:
isl_pw_qpolynomial_fold_free(data->pwf_tight);
isl_pw_qpolynomial_fold_free(data->pwf);
return NULL;
}
/* Apply bernstein expansion recursively by working in on len[i]
* set variables at a time, with i ranging from n_group - 1 to 0.
*/
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_recursive(
__isl_take isl_pw_qpolynomial *pwqp,
int n_group, int *len, struct bernstein_data *data, isl_bool *tight)
{
int i;
isl_size nparam;
isl_size nvar;
isl_pw_qpolynomial_fold *pwf;
nparam = isl_pw_qpolynomial_dim(pwqp, isl_dim_param);
nvar = isl_pw_qpolynomial_dim(pwqp, isl_dim_in);
if (nparam < 0 || nvar < 0)
goto error;
pwqp = isl_pw_qpolynomial_move_dims(pwqp, isl_dim_param, nparam,
isl_dim_in, 0, nvar - len[n_group - 1]);
pwf = isl_pw_qpolynomial_bound(pwqp, data->type, tight);
for (i = n_group - 2; i >= 0; --i) {
nparam = isl_pw_qpolynomial_fold_dim(pwf, isl_dim_param);
if (nparam < 0)
return isl_pw_qpolynomial_fold_free(pwf);
pwf = isl_pw_qpolynomial_fold_move_dims(pwf, isl_dim_in, 0,
isl_dim_param, nparam - len[i], len[i]);
if (tight && !*tight)
tight = NULL;
pwf = isl_pw_qpolynomial_fold_bound(pwf, tight);
}
return pwf;
error:
isl_pw_qpolynomial_free(pwqp);
return NULL;
}
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_factors(
__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
isl_bool *tight)
{
isl_factorizer *f;
isl_set *set;
isl_pw_qpolynomial *pwqp;
isl_pw_qpolynomial_fold *pwf;
f = isl_basic_set_factorizer(bset);
if (!f)
goto error;
if (f->n_group == 0) {
isl_factorizer_free(f);
return bernstein_coefficients_base(bset, poly, data, tight);
}
set = isl_set_from_basic_set(bset);
pwqp = isl_pw_qpolynomial_alloc(set, poly);
pwqp = isl_pw_qpolynomial_morph_domain(pwqp, isl_morph_copy(f->morph));
pwf = bernstein_coefficients_recursive(pwqp, f->n_group, f->len, data,
tight);
isl_factorizer_free(f);
return pwf;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return NULL;
}
static __isl_give isl_pw_qpolynomial_fold *bernstein_coefficients_full_recursive(
__isl_take isl_basic_set *bset,
__isl_take isl_qpolynomial *poly, struct bernstein_data *data,
isl_bool *tight)
{
int i;
int *len;
isl_size nvar;
isl_pw_qpolynomial_fold *pwf;
isl_set *set;
isl_pw_qpolynomial *pwqp;
nvar = isl_basic_set_dim(bset, isl_dim_set);
if (nvar < 0 || !poly)
goto error;
len = isl_alloc_array(bset->ctx, int, nvar);
if (nvar && !len)
goto error;
for (i = 0; i < nvar; ++i)
len[i] = 1;
set = isl_set_from_basic_set(bset);
pwqp = isl_pw_qpolynomial_alloc(set, poly);
pwf = bernstein_coefficients_recursive(pwqp, nvar, len, data, tight);
free(len);
return pwf;
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return NULL;
}
/* Compute a bound on the polynomial defined over the parametric polytope
* using bernstein expansion and store the result
* in bound->pwf and bound->pwf_tight.
*
* If bernstein_recurse is set to ISL_BERNSTEIN_FACTORS, we check if
* the polytope can be factorized and apply bernstein expansion recursively
* on the factors.
* If bernstein_recurse is set to ISL_BERNSTEIN_INTERVALS, we apply
* bernstein expansion recursively on each dimension.
* Otherwise, we apply bernstein expansion on the entire polytope.
*/
isl_stat isl_qpolynomial_bound_on_domain_bernstein(
__isl_take isl_basic_set *bset, __isl_take isl_qpolynomial *poly,
struct isl_bound *bound)
{
struct bernstein_data data;
isl_pw_qpolynomial_fold *pwf;
isl_size nvar;
isl_bool tight = isl_bool_false;
isl_bool *tp = bound->check_tight ? &tight : NULL;
nvar = isl_basic_set_dim(bset, isl_dim_set);
if (nvar < 0 || !poly)
goto error;
data.type = bound->type;
data.check_tight = bound->check_tight;
if (bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_FACTORS)
pwf = bernstein_coefficients_factors(bset, poly, &data, tp);
else if (nvar > 1 &&
(bset->ctx->opt->bernstein_recurse & ISL_BERNSTEIN_INTERVALS))
pwf = bernstein_coefficients_full_recursive(bset, poly, &data, tp);
else
pwf = bernstein_coefficients_base(bset, poly, &data, tp);
if (tight)
return isl_bound_add_tight(bound, pwf);
else
return isl_bound_add(bound, pwf);
error:
isl_basic_set_free(bset);
isl_qpolynomial_free(poly);
return isl_stat_error;
}