-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
185 lines (153 loc) · 8.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import os
import math
import argparse
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from vit_pytorch import ViT
from fairscale.nn.data_parallel import FullyShardedDataParallel
from my_dataset import MyDataSet
from vit_model import vit_base_patch16_224_in21k as create_model
from utils import read_split_data, train_one_epoch, evaluate
# 新增1:依赖
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
def main(args):
local_rank = args.local_rank
# 新增3:DDP backend初始化
# a.根据local_rank来设定当前使用哪块GPU
# torch.cuda.set_device(local_rank)
torch.cuda.set_device('cuda:' + local_rank)
# b.初始化DDP,使用默认backend(nccl)就行。如果是CPU模型运行,需要选择其他后端。
dist.init_process_group(backend='nccl')
# 新增4:定义并把模型放置到单独的GPU上,需要在调用`model=DDP(model)`前做哦。
# 如果要加载模型,也必须在这里做哦。
device = torch.device("cuda:" + local_rank)
# device = torch.device(args.device if torch.cuda.is_available() else "cpu")
if os.path.exists("./weights") is False:
os.makedirs("./weights")
tb_writer = SummaryWriter()
train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)
data_transform = {
"train": transforms.Compose([transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]),
"val": transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])}
# 实例化训练数据集
train_dataset = MyDataSet(images_path=train_images_path,
images_class=train_images_label,
transform=data_transform["train"])
# 实例化验证数据集
val_dataset = MyDataSet(images_path=val_images_path,
images_class=val_images_label,
transform=data_transform["val"])
batch_size = args.batch_size
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
# 新增1:使用DistributedSampler,DDP帮我们把细节都封装起来了。用,就完事儿!
# sampler的原理,后面也会介绍。
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
# 需要注意的是,这里的batch_size指的是每个进程下的batch_size。也就是说,总batch_size是这里的batch_size再乘以并行数(world_size)。
val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
# 需要注意的是,这里的batch_size指的是每个进程下的batch_size。也就是说,总batch_size是这里的batch_size再乘以并行数(world_size)。
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
sampler=train_sampler,
pin_memory=True,
num_workers=nw,
collate_fn=train_dataset.collate_fn)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=batch_size,
sampler=val_sampler,
pin_memory=True,
num_workers=nw,
collate_fn=val_dataset.collate_fn)
# model = create_model(num_classes=5, has_logits=False).to(device)
model = ViT(
image_size = 224, # 图像大小
patch_size = 16, # patch大小(分块的大小)
num_classes = 5, # imagenet数据集1000分类
dim = 768, # position embedding的维度
depth = 12, # encoder和decoder中block层数是6
heads = 12, # multi-head中head的数量为16
mlp_dim = 2048,
dropout = 0.1, #
emb_dropout = 0.1
).to(device)
model = DDP(model, device_ids=[int(local_rank)], output_device=int(local_rank),find_unused_parameters=True) # 此处必须要加find_unused这个奇怪的参数。。?诡异。暂时没研究原理
print('enter before FSDP')
# model = FSDP(model)
print('enter after FSDP')
if args.weights != "":
assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
weights_dict = torch.load(args.weights, map_location=device)
# 删除不需要的权重
del_keys = ['head.weight', 'head.bias'] if model.has_logits \
else ['pre_logits.fc.weight', 'pre_logits.fc.bias', 'head.weight', 'head.bias']
for k in del_keys:
del weights_dict[k]
print(model.load_state_dict(weights_dict, strict=False))
if args.freeze_layers:
for name, para in model.named_parameters():
# 除head, pre_logits外,其他权重全部冻结
if "head" not in name and "pre_logits" not in name:
para.requires_grad_(False)
else:
print("training {}".format(name))
pg = [p for p in model.parameters() if p.requires_grad]
optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=5E-5)
# Scheduler https://arxiv.org/pdf/1812.01187.pdf
lf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf # cosine
scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
for epoch in range(args.epochs):
train_loader.sampler.set_epoch(epoch)
# train
print('enter one epoch')
train_loss, train_acc = train_one_epoch(model=model,
optimizer=optimizer,
data_loader=train_loader,
device=device,
epoch=epoch)
scheduler.step()
# validate
val_loss, val_acc = evaluate(model=model,
data_loader=val_loader,
device=device,
epoch=epoch)
tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
tb_writer.add_scalar(tags[0], train_loss, epoch)
tb_writer.add_scalar(tags[1], train_acc, epoch)
tb_writer.add_scalar(tags[2], val_loss, epoch)
tb_writer.add_scalar(tags[3], val_acc, epoch)
tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)
torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_classes', type=int, default=5)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=8)
parser.add_argument('--lr', type=float, default=0.001)
parser.add_argument('--lrf', type=float, default=0.01)
# 数据集所在根目录
# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
parser.add_argument('--data-path', type=str,
default="../flower_photos")
parser.add_argument('--model-name', default='', help='create model name')
# 预训练权重路径,如果不想载入就设置为空字符
# parser.add_argument('--weights', type=str, default='./vit_base_patch16_224_in21k.pth',
# help='initial weights path')
parser.add_argument('--weights', type=str, default='',
help='initial weights path')
# 是否冻结权重
parser.add_argument('--freeze-layers', type=bool, default=True)
parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')
parser.add_argument("--local_rank", default=-1)
opt = parser.parse_args()
main(opt)