forked from PnYuan/Machine-Learning_ZhouZhihua
-
Notifications
You must be signed in to change notification settings - Fork 0
/
周志华《机器学习》课后习题解答系列(四):Ch3 - 线性模型.html
401 lines (345 loc) · 11.8 KB
/
周志华《机器学习》课后习题解答系列(四):Ch3 - 线性模型.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
<!DOCTYPE html>
<html>
<head>
<title>周志华《机器学习》课后习题解答系列(四):Ch3 - 线性模型</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<style type="text/css">
/* GitHub stylesheet for MarkdownPad (http://markdownpad.com) */
/* Author: Nicolas Hery - http://nicolashery.com */
/* Version: b13fe65ca28d2e568c6ed5d7f06581183df8f2ff */
/* Source: https://github.com/nicolahery/markdownpad-github */
/* RESET
=============================================================================*/
html, body, div, span, applet, object, iframe, h1, h2, h3, h4, h5, h6, p, blockquote, pre, a, abbr, acronym, address, big, cite, code, del, dfn, em, img, ins, kbd, q, s, samp, small, strike, strong, sub, sup, tt, var, b, u, i, center, dl, dt, dd, ol, ul, li, fieldset, form, label, legend, table, caption, tbody, tfoot, thead, tr, th, td, article, aside, canvas, details, embed, figure, figcaption, footer, header, hgroup, menu, nav, output, ruby, section, summary, time, mark, audio, video {
margin: 0;
padding: 0;
border: 0;
}
/* BODY
=============================================================================*/
body {
font-family: Helvetica, arial, freesans, clean, sans-serif;
font-size: 14px;
line-height: 1.6;
color: #333;
background-color: #fff;
padding: 20px;
max-width: 960px;
margin: 0 auto;
}
body>*:first-child {
margin-top: 0 !important;
}
body>*:last-child {
margin-bottom: 0 !important;
}
/* BLOCKS
=============================================================================*/
p, blockquote, ul, ol, dl, table, pre {
margin: 15px 0;
}
/* HEADERS
=============================================================================*/
h1, h2, h3, h4, h5, h6 {
margin: 20px 0 10px;
padding: 0;
font-weight: bold;
-webkit-font-smoothing: antialiased;
}
h1 tt, h1 code, h2 tt, h2 code, h3 tt, h3 code, h4 tt, h4 code, h5 tt, h5 code, h6 tt, h6 code {
font-size: inherit;
}
h1 {
font-size: 28px;
color: #000;
}
h2 {
font-size: 24px;
border-bottom: 1px solid #ccc;
color: #000;
}
h3 {
font-size: 18px;
}
h4 {
font-size: 16px;
}
h5 {
font-size: 14px;
}
h6 {
color: #777;
font-size: 14px;
}
body>h2:first-child, body>h1:first-child, body>h1:first-child+h2, body>h3:first-child, body>h4:first-child, body>h5:first-child, body>h6:first-child {
margin-top: 0;
padding-top: 0;
}
a:first-child h1, a:first-child h2, a:first-child h3, a:first-child h4, a:first-child h5, a:first-child h6 {
margin-top: 0;
padding-top: 0;
}
h1+p, h2+p, h3+p, h4+p, h5+p, h6+p {
margin-top: 10px;
}
/* LINKS
=============================================================================*/
a {
color: #4183C4;
text-decoration: none;
}
a:hover {
text-decoration: underline;
}
/* LISTS
=============================================================================*/
ul, ol {
padding-left: 30px;
}
ul li > :first-child,
ol li > :first-child,
ul li ul:first-of-type,
ol li ol:first-of-type,
ul li ol:first-of-type,
ol li ul:first-of-type {
margin-top: 0px;
}
ul ul, ul ol, ol ol, ol ul {
margin-bottom: 0;
}
dl {
padding: 0;
}
dl dt {
font-size: 14px;
font-weight: bold;
font-style: italic;
padding: 0;
margin: 15px 0 5px;
}
dl dt:first-child {
padding: 0;
}
dl dt>:first-child {
margin-top: 0px;
}
dl dt>:last-child {
margin-bottom: 0px;
}
dl dd {
margin: 0 0 15px;
padding: 0 15px;
}
dl dd>:first-child {
margin-top: 0px;
}
dl dd>:last-child {
margin-bottom: 0px;
}
/* CODE
=============================================================================*/
pre, code, tt {
font-size: 12px;
font-family: Consolas, "Liberation Mono", Courier, monospace;
}
code, tt {
margin: 0 0px;
padding: 0px 0px;
white-space: nowrap;
border: 1px solid #eaeaea;
background-color: #f8f8f8;
border-radius: 3px;
}
pre>code {
margin: 0;
padding: 0;
white-space: pre;
border: none;
background: transparent;
}
pre {
background-color: #f8f8f8;
border: 1px solid #ccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
border-radius: 3px;
}
pre code, pre tt {
background-color: transparent;
border: none;
}
kbd {
-moz-border-bottom-colors: none;
-moz-border-left-colors: none;
-moz-border-right-colors: none;
-moz-border-top-colors: none;
background-color: #DDDDDD;
background-image: linear-gradient(#F1F1F1, #DDDDDD);
background-repeat: repeat-x;
border-color: #DDDDDD #CCCCCC #CCCCCC #DDDDDD;
border-image: none;
border-radius: 2px 2px 2px 2px;
border-style: solid;
border-width: 1px;
font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;
line-height: 10px;
padding: 1px 4px;
}
/* QUOTES
=============================================================================*/
blockquote {
border-left: 4px solid #DDD;
padding: 0 15px;
color: #777;
}
blockquote>:first-child {
margin-top: 0px;
}
blockquote>:last-child {
margin-bottom: 0px;
}
/* HORIZONTAL RULES
=============================================================================*/
hr {
clear: both;
margin: 15px 0;
height: 0px;
overflow: hidden;
border: none;
background: transparent;
border-bottom: 4px solid #ddd;
padding: 0;
}
/* TABLES
=============================================================================*/
table th {
font-weight: bold;
}
table th, table td {
border: 1px solid #ccc;
padding: 6px 13px;
}
table tr {
border-top: 1px solid #ccc;
background-color: #fff;
}
table tr:nth-child(2n) {
background-color: #f8f8f8;
}
/* IMAGES
=============================================================================*/
img {
max-width: 100%
}
</style>
</head>
<body>
<h2>本章概要</h2>
<p>本章开始涉及编程练习,这里采用<strong>Python-sklearn</strong>的方式,环境搭建可参考<a href="http://blog.csdn.net/snoopy_yuan/article/details/61211639"> 数据挖掘入门:Python开发环境搭建(eclipse-pydev模式)</a>.</p>
<p>相关答案和源代码托管在我的Github上:<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua">PY131/Machine-Learning_ZhouZhihua</a>.</p>
<p>本章讲述<strong>线性模型</strong>(linear model),相关内容包括:</p>
<ul>
<li>线性回归(linear regression)</li>
</ul>
<blockquote>
<p>序关系(order)、均方差(square error)最小化、欧式距离(Euclidean distance)、<strong>最小二乘法</strong>(least square method)、参数估计(parameter estimation)、多元线性回归(multivariate linear regression)、广义线性回归(generalized linear model)、对数线性回归(log-linear regression);</p>
</blockquote>
<ul>
<li>对数几率回归(逻辑回归)(logistic regression)</li>
</ul>
<blockquote>
<p>分类、Sigmoid函数、对数几率(log odds / logit)、极大似然法(maximum likelihood method);</p>
</blockquote>
<ul>
<li>线性判别分析(linear discriminant analysis - LDA)</li>
</ul>
<blockquote>
<p>类内散度(within-class scatter)、类间散度(between-class scatter);</p>
</blockquote>
<ul>
<li>多分类学习(multi-classifier)</li>
</ul>
<blockquote>
<p>拆解法,一对一(One vs One - OvO)、一对其余(OvR)、多对多(MvM)、纠错输出码(ECOC)、编码矩阵(coding matrix)、二元码、多标记学习(multi-label learning);</p>
</blockquote>
<ul>
<li>类别不平衡(class-imbalance)</li>
</ul>
<blockquote>
<p>再缩放(rescaling)、欠采样(undersampling)、过采样(oversampling)、阈值移动(threshold-moving);</p>
</blockquote>
<h2>习题解答</h2>
<h4>3.1 线性回归模型偏置项</h4>
<blockquote>
<p><img src="Ch3/3.1.png" /></p>
</blockquote>
<p>偏置项b在数值上代表了自变量取0时,因变量的取值;</p>
<p>1.当讨论变量x对结果y的影响,不用考虑b;
2.可以用变量归一化(max-min或z-score)来消除偏置。</p>
<hr />
<h4>3.2 证明对数似然函数是凸函数(参数存在最优解)</h4>
<blockquote>
<p><img src="Ch3/3.2.png" /></p>
</blockquote>
<p>直接给出证明结果如下图:</p>
<blockquote>
<p><img src="Ch3/3.2.1.png" /></p>
</blockquote>
<hr />
<h4>3.3 编程实现对率回归</h4>
<blockquote>
<p><img src="Ch3/3.3.png" /></p>
</blockquote>
<p>所使用的数据集如下:</p>
<blockquote>
<p><img src="Ch3/3.3.1.png" /></p>
</blockquote>
<p>本题是本书的第一个编程练习,采用了自己编程实现和调用sklearn库函数两种不同的方式(<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua/tree/master/ch3_linear_model/3.3_logistic_regression_watermelon/">查看完整代码</a>):</p>
<p>具体的实现过程见:<a href="http://blog.csdn.net/snoopy_yuan/article/details/63684219">周志华《机器学习》课后习题解答系列(四):Ch3.3 - 编程实现对率回归</a></p>
<hr />
<h4>3.4 比较k折交叉验证法与留一法</h4>
<blockquote>
<p><img src="Ch3/3.4.png" /></p>
</blockquote>
<p>本题采用UCI中的<a href="http://archive.ics.uci.edu/ml/datasets/Iris">iris data set</a> 和 <a href="http://archive.ics.uci.edu/ml/datasets/Blood+Transfusion+Service+Center">Blood Transfusion Service Center Data Set</a> 数据集,借助sklearn实现(<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua/tree/master/ch3_linear_model/3.4_cross_validation">查看完整代码</a>)。</p>
<p>具体的实现过程见:<a href="http://blog.csdn.net/snoopy_yuan/article/details/64131129">周志华《机器学习》课后习题解答系列(四):Ch3 - 3.4.交叉验证法练习</a></p>
<hr />
<h4>3.5 编程实现线性判别分析</h4>
<blockquote>
<p><img src="Ch3/3.5.png" /></p>
</blockquote>
<p>本题采用题3.3的西瓜数据集,采用基于sklearn实现和自己独立编程实现两种方式(<a href="https://github.com/PY131/Machine-Learning_ZhouZhihua/tree/master/ch3_linear_model/3.5_LDA">查看完整代码</a>)。</p>
<p>具体的实现过程见:<a href="http://blog.csdn.net/snoopy_yuan/article/details/64443841">周志华《机器学习》课后习题解答系列(四):Ch3 - 3.5.编程实现线性判别分析</a></p>
<hr />
<h4>3.6 线性判别分析的非线性拓展思考</h4>
<blockquote>
<p><img src="Ch3/3.6.png" /></p>
</blockquote>
<p>给出两种思路:</p>
<ul>
<li>参考书p57,采用<strong>广义线性模型</strong>,如 y-> ln(y)。</li>
<li>参考书p137,采用<strong>核方法</strong>将非线性特征空间隐式映射到线性空间,得到<strong>KLDA</strong>(核线性判别分析)。</li>
</ul>
<hr />
<h4>3.7 最优ECOC编码方式</h4>
<blockquote>
<p><img src="Ch3/3.7.png" /></p>
</blockquote>
<p>参考书p65,<em>对于同等长度的编码,理论上来说,任意两个类别间的编码距离越远,纠错能力越强</em>。那么如何实现呢,可参考文献<a href="http://www.ccs.neu.edu/home/vip/teach/MLcourse/4_boosting/lecture_notes/ecoc/ecoc.pdf">Error-Correcting Output Codes</a>。下图是截取文中的关于在较少类时采用<strong>exhaustive codes</strong>来生成最优ECOC二元码的过程:</p>
<blockquote>
<p><img src="Ch3/3.7.1.png" /></p>
</blockquote>
<p>采用文中方法,每两类的Hamming Distance均达到了码长的一半,这也是最优的编码方式之一。</p>
<hr />
<h4>3.9 多分类到二分类分解、类别不平衡</h4>
<blockquote>
<p><img src="Ch3/3.9.png" /></p>
</blockquote>
<p>参考书p66,<em>对OvR、MvM来说,由于对每类进行了相同的处理,其拆解出的二分类任务中类别不平衡的影响会相互抵销,因此通常不需专门处理。</em></p>
<p>以<strong>OvR</strong>(一对其余)为例,由于其每次以一个类为正其余为反(参考书p63),共训练出N个分类器,在这一过程中,类别不平衡由O的遍历而抵消掉。</p>
<hr />
</body>
</html>
<!-- This document was created with MarkdownPad, the Markdown editor for Windows (http://markdownpad.com) -->