-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
- Loading branch information
There are no files selected for viewing
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
# Signals-and-Systems | ||
|
||
Some notes about Signals and Systems. | ||
|
||
2020年上半年学习这门课程时的笔记,前后陆陆续续发布在CSDN,具体可以查看我的CSDN专栏:[【信号与系统】](https://blog.csdn.net/qq_43328313/category_9785559.html) | ||
|
||
2022年初将笔记的源 `md` 文件上传至 **github**,欢迎star! | ||
|
||
2024年使用Docsify搭建了一个静态网站,可以在线阅读:[https://axyzdong.github.io/Signals-and-Systems/](https://axyzdong.github.io/Signals-and-Systems/) | ||
|
||
## Introduction | ||
|
||
包含【笔记】【测验题】【实验题】,可配合西安电子科技大学郭宝龙老师的视频使用(B站搜索信号与系统郭宝龙老师)。 | ||
|
||
|
||
## Buy Me a Coffee | ||
如果你觉得本项目帮助到了你,你可以帮作者买一杯果汁表示鼓励🍹 ~~~ | ||
|
||
<img src="https://cdn.buymeacoffee.com/buttons/default-orange.png" alt="Buy Me A Coffee" height="41" width="174"> | ||
|
||
**WeChat Pay / Alipay** | ||
|
||
<img src="images/Pay.png" width = "500" alt="pay" align=center /> | ||
|
||
## Contact me | ||
|
||
CSDN:https://axyzdong.blog.csdn.net/ | ||
|
||
Email:[email protected] | ||
|
||
|
||
## LICENSE | ||
<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/"><img alt="知识共享许可协议" style="border-width:0" src="https://img.shields.io/badge/license-CC%20BY--NC--SA%204.0-lightgrey" /></a><br />本作品采用<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议</a>进行许可。 | ||
|
||
|
||
## Star History | ||
|
||
[![Star History Chart](https://api.star-history.com/svg?repos=AXYZdong/Signals-and-Systems&type=Date)](https://star-history.com/#AXYZdong/Signals-and-Systems&Date) | ||
|
||
|
||
<!---## Stargazers over time---> | ||
|
||
<!---[![Stargazers over time](https://starchart.cc/AXYZdong/Signals-and-Systems.svg)](https://starchart.cc/AXYZdong/Signals-and-Systems)---> | ||
|
||
|
||
|
||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
* 目录 | ||
* [第 1 章 绪论](ch1/ch1.md) | ||
* [第 2 章 时域分析](ch2/ch2.md) | ||
* 第 3 章 频域分析 | ||
* [3.1 信号的正交分解与傅里叶级数](ch3/ch3.1.md) | ||
* [3.2 信号的频谱与傅里叶变换(一图看懂傅里叶变换)](ch3/ch3.2.md) | ||
* [3.3 傅里叶变换的性质与周期信号的傅立叶变换](ch3/ch3.3.md) | ||
* [3.4 系统的频域分析与取样定理](ch3/ch3.4.md) | ||
* 第 4 章 复频域域分析 | ||
* [4.1 拉普拉斯变换](ch4/ch4.1.md) | ||
* [4.2 拉普拉斯变换的性质](ch4/ch4.2.md) | ||
* [4.3 拉普拉斯逆变换](ch4/ch4.3.md) | ||
* [4.4 复频域分析](ch4/ch4.4.md) | ||
* 第 5 章 Z 域分析 | ||
* [5.1 Z 变换](ch5/ch5.1.md) | ||
* [5.2 Z 变换的性质](ch5/ch5.2.md) | ||
* [5.3 逆 Z 变换](ch5/ch5.3.md) | ||
* [5.4 Z 域分析](ch5/ch5.4.md) | ||
* 实验 | ||
* [实验1 常用信号的分析与基本运算](experiment/exp1.md) | ||
* [实验2 Multisim 仿真信号合成与分解](experiment/exp2.md) | ||
* [实验3 Multisim 仿真连续时间系统的时域分析](experiment/exp3.md) | ||
* [实验4 Multisim 仿真抽样定理与信号恢复](experiment/exp4.md) | ||
* 测试 | ||
* [测试1 系统复频域小测验](test/test1.md) | ||
* [测试2 Z 域分析小测验](test/test2.md) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
>Author:AXYZdong | ||
>自动化专业 工科男 | ||
>有一点思考,有一点想法,有一点理性! | ||
@[TOC] | ||
# 一、信号 | ||
## 1、概念 | ||
信号:物质的运动形式或状态的变化。 | ||
表示:信号常用时间函数(或序列)表示。该函数的图像称为信号的波形。 | ||
## 2、分类 | ||
|分类标准|信号类别| | ||
|--|--| | ||
|以自变量取值分类|连续信号、离散信号| | ||
|以信号的起始时刻分类|因果信号、非因果信号| | ||
|以$f(t)$取值分类|周期信号、非周期信号| | ||
|以确立与随机分类|确定信号、随机信号| | ||
|以$f(t)$为实函数或复函数分类|实信号、复信号| | ||
|以能量是否有限分类|能量有限信号、能量无限信号| | ||
## 3、周期信号和非周期信号 | ||
### 3.1、基本概念 | ||
周期信号(period signal)是定义在 (-$\infty$,+$\infty$)区间,每隔一定时间$T$(或整数$N$),按相同规律重复变化的信号。 | ||
|
||
连续周期信号$f(t)$满足: | ||
$f(t)=f(t+mT),m=0,\pm1,\pm2,...$ | ||
|
||
离散周期信号$f(k)$满足: | ||
$f(k)=f(k+mN),m=0,\pm1,\pm2,...$ | ||
|
||
满足上述关系的最小$T$(或整数$N$)称为该信号的周期。不具有周期性的信号称为非周期信号。 | ||
### 3.2、周期$T$求法 | ||
举两个例子,通过例子来说明具体求法。 | ||
<strong>(1)$f_1(t)=\sin2t + \cos3t$ (2)$f_2(t)=\cos2t + \sin \pi t$ | ||
|
||
解:<font color=red> 两个周期信号$x(t),y(t)$的周期分别为$T_1,T_2$,若其周期之比$\frac{T_1}{T_2}$为有理数,则其和信号$x(t)+y(t)$仍然是周期信号,其周期为$T_1$和$T_2$的最小公倍数。</font> | ||
|
||
(1)$\sin2t,T_1=\frac{2\pi}{2}=\pi$ | ||
|
||
$\cos3t,T_2=\frac{2\pi}{3}$ | ||
|
||
$\frac{T_1}{T_2}=\frac{3}{ 2}$为有理数,$f_1(t)$为周期信号,周期$2\pi$ | ||
|
||
(2)$\cos2t,T_1=\frac{2\pi}{2}=\pi$ | ||
|
||
$\sin \pi t,T_2=\frac{2\pi}{\pi}=2$ | ||
|
||
$\frac{T_1}{T_2}=\frac{\pi}{ 2}$为无理数,$f_2(t)$为非周期信号 | ||
|
||
<strong>总结:①连续的正弦信号一定是周期信号 | ||
②正弦序列不一定是周期序列 | ||
③ 两连续周期信号之和不一定是周期信号 | ||
④两周期序列之和一定是周期序列 | ||
# 二、系统 | ||
## 1、概念 | ||
系统(system):由若干个相互联系、相互作用的单元组成的具有一定功能的整体。 | ||
例:收音机系统 | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/202003081659002.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzMzI4MzEz,size_16,color_FFFFFF,t_70#pic_center) | ||
表示:图示、方程(微分方程、差分方程)。 | ||
## 2、分类 | ||
按系统处理信号的形式分类 | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200308170155528.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzMzI4MzEz,size_16,color_FFFFFF,t_70#pic_center) | ||
## 3、线性系统 | ||
### 3.1概念 | ||
线性(linearity property):均匀性、叠加性。 | ||
线性系统:指具有线性特性的系统 | ||
系统的线性特性: | ||
$\underrightarrow{f_1(t)}$ $H$ $\underrightarrow{y_1(t)}$ | ||
|
||
$\underrightarrow{f_2(t)}$ $H$ $\underrightarrow{y_2(t)}$ | ||
|
||
$\underrightarrow{\alpha _1f_1(t)+\alpha _2f_2(t)}$ $H$ $\underrightarrow{\alpha _1y_1(t)+\alpha _2y_2(t)}$ | ||
### 3.2线性系统的判断方法 | ||
<font color=red> 先线性运算,再经系统 = 先经系统,再线性运算</font> | ||
|
||
$$ | ||
\left. | ||
\begin{array}{l} | ||
\text{$\underrightarrow{f_1(t)}$ $C_1$ $\underrightarrow{C_1f_1(t)}$}\\ | ||
\text{$\underrightarrow{f_2(t)}$ $C_2$ $\underrightarrow{C_2f_2(t)}$} | ||
\end{array} | ||
\right\} | ||
\to C_1f_1(t)+C_2f_2(t) | ||
\to H | ||
\to H \lbrace C_1f_1(t)+C_2f_2(t) \rbrace | ||
$$ | ||
$$ | ||
\left. | ||
\begin{array}{l} | ||
\text{$\underrightarrow{f_1(t)}$ $H$ $\underrightarrow{ H \lbrace f_1(t) \rbrace }$}\\ | ||
\text{$\underrightarrow{f_2(t)}$ $H$ $\underrightarrow{ H \lbrace f_2(t) \rbrace}$} | ||
\end{array} | ||
\right\} | ||
\to H \lbrace f_1(t) \rbrace+H \lbrace f_2(t) \rbrace | ||
\to C | ||
\to C_1H \lbrace f_1(t) \rbrace + C_2H \lbrace f_2(t) \rbrace | ||
$$ | ||
若$H \lbrace C_1f_1(t)+C_2f_2(t) \rbrace = C_1H \lbrace f_1(t) \rbrace + C_2H \lbrace f_2(t) \rbrace$ | ||
|
||
则系统$H$为线性系统 | ||
|
||
<strong>例:判断方程所描述的系统的线性 | ||
|
||
$y(k)+(k-1)y(k-1)=f(k)$ | ||
|
||
解: | ||
$$ | ||
f_1(k) \to y_1(k) ,f_2(k) \to y_2(k)\\ | ||
f_1(k)+f_2(k)=y_1(k)+y_2(k)+(k-1) \lbrace y_1(k-1)+y_2(k-1) \rbrace\\ | ||
f_1(k)+f_2(k) \to y_1(k) + y_2(k)\\ | ||
f_1(k)+f_2(k)=y_1(k)+y_2(k)+(k-1) \lbrace y_1(k-1)+y_2(k-1) \rbrace\\ | ||
$$ | ||
故:方程所描述的系统是线性系统。 | ||
## 4、时不变系统 | ||
### 4.1概念 | ||
时不变系统:一个系统,在零初始条件下,其输出响应与输入信号施加于系统的时间起点无关,这样的系统称为时不变系统。 | ||
|
||
时不变性:系统具有上述的性质称为时不变性。 | ||
### 4.2判断方法 | ||
<font color=red> 先时移,再经系统 = 先经系统,再时移</font> | ||
|
||
$$ | ||
f(t)\to 时移\tau | ||
\to f(t-\tau) | ||
\to H | ||
\to H \lbrace f(t-\tau) \rbrace \\ | ||
$$ | ||
$$ | ||
\underrightarrow{f(t)} H \to H \lbrace f_1(t) \rbrace | ||
\underrightarrow{令y(t)=H \lbrace f_1(t) \rbrace} | ||
\to 时移\tau | ||
\to y(t-\tau)\\ | ||
$$ | ||
若:$H \lbrace f(t-\tau) \rbrace = y(t-\tau)$,则系统$H$是时不变系统。 | ||
|
||
## 5、线性时不变系统(Linear and Time-invariant System) | ||
线性时不变系统:系统既是线性的,又是时不变的;或系统的方程为线性常系数微分方程。 | ||
|
||
# 三、常用的基本信号 | ||
## 1、单位阶跃信号(unit step signal) | ||
$$ | ||
\epsilon(t) = | ||
\begin{cases} | ||
1, & \text{t>0} \\ | ||
0, & \text{t<0} | ||
\end{cases} | ||
$$ | ||
时移$t_0$ | ||
$$ | ||
\epsilon(t-t_0) = | ||
\begin{cases} | ||
1, & t>t_0\\ | ||
0, & t<t_0 | ||
\end{cases} | ||
$$ | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200308190140732.png#pic_center) | ||
## 2、矩形脉冲信号(门函数) | ||
$$ | ||
g_\tau(t) = | ||
\begin{cases} | ||
1, & (|t|<\frac{\tau}{2})\\ | ||
0, & (|t|>\frac{\tau}{2}) | ||
\end{cases} | ||
$$ | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/2020030819061149.png#pic_center) | ||
## 3、斜坡信号(ramp signal) | ||
$$ | ||
r(t) = | ||
\begin{cases} | ||
0, & t<0 \\ | ||
t, & t \geq 0 | ||
\end{cases}\\ | ||
$$ | ||
$=t\epsilon(t)$ | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200308191413817.png#pic_center) | ||
## 4、取样函数(sampling function) | ||
$$S_a(t)=\frac{\sin t}{t} (-\infty <t<+\infty)$$ | ||
|
||
![在这里插入图片描述](https://img-blog.csdnimg.cn/20200308192732671.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzMzI4MzEz,size_16,color_FFFFFF,t_70#pic_center) | ||
><strong><font color=black>①偶函数 | ||
② 当$t=0$时,$S_a(t)=1$为最大值 | ||
③ 曲线呈衰减振荡 | ||
>④ $$\int_0^\infty {S_a(t)} \,{\rm d}t=\frac{\pi}{2} , \int_ {-\infty}^{\infty} {S_a(t)} \,{\rm d}t=\pi$$ | ||
> | ||
取样函数常用形式 $\sin c(t)=\frac{\sin \pi t}{\pi t}=S_a(\pi t)$ | ||
## 5、单位冲激函数(unit impulse function) | ||
视作矩形脉冲的极限 | ||
|
||
|
||
p; ![在这里插入图片描述](https://img-blog.csdnimg.cn/20200308193347337.png#pic_center) | ||
$$ | ||
\delta(t) = | ||
\begin{cases} | ||
\infty, & t=0 \\ | ||
0, & t \neq0 | ||
\end{cases} | ||
$$ | ||
$$ \int_ {-\infty}^\infty {\delta(t)} \,{\rm d}t=1$$ | ||
延时冲激:$A\delta(t-t_0)$ | ||
|
||
冲激偶:$\delta \prime(t)=\frac{d\delta(t)}{dt}$ | ||
|
||
<strong>性质:1、偶函数:$\delta(t)=\delta(-t)$ | ||
2、取样性: | ||
<font color=red> | ||
$$ | ||
f(t)\cdot \delta(t)=f(0)\cdot \delta(t)\\ | ||
f(t)\cdot \delta(t-t_0)=f(t_0)\cdot \delta(t-t_0)\\ | ||
$$ | ||
$$ | ||
\int_ {-\infty}^\infty {f(t)\cdot \delta(t)} \,{\rm d}t=f(0)\\ | ||
\int_ {-\infty}^\infty {f(t)\cdot \delta(t-t_0)} \,{\rm d}t=f(t_0)\\ | ||
$$ | ||
</font> | ||
$\delta(t)$与$\epsilon(t)$的关系: | ||
$$ \int_ {-\infty}^t {\delta(\tau)} \,{\rm d}\tau=\epsilon(t)$$ | ||
$$\frac{d\epsilon(t)}{dt}=\delta(t)$$ | ||
|
||
<em>利用该性质可对不连续函数求导。 | ||
|
||
<br> | ||
|
||
「你可能还想看」系列文章: | ||
[【信号与系统】笔记合集,你确定不收藏吗?我已经收藏了](https://axyzdong.blog.csdn.net/article/details/105909575) | ||
|
||
\ | ||
<strong> <font color=red><strong>看完就赞,养成习惯,尊重别人的劳动是一种美德!!!^ _ ^ <3 <3 <3</font> | ||
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了👉<font color=red>关注</font>👈我哦! | ||
更多精彩内容请前往 [AXYZdong的博客](https://blog.csdn.net/qq_43328313) | ||
|
||
<hr><p>如果以上内容有任何错误或者不准确的地方,欢迎在下面👇留个言。或者你有更好的想法,欢迎一起交流学习~~~</p> |