-
Notifications
You must be signed in to change notification settings - Fork 321
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: manually instrumented chatbot (#2730)
- Loading branch information
1 parent
f54ce30
commit 46be32b
Showing
8 changed files
with
348 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
.venv | ||
*egg-info/ | ||
__pycache__/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
server: | ||
uvicorn chat.app:app --reload | ||
|
||
streamlit: | ||
streamlit run app.py | ||
|
||
format: | ||
ruff check --fix . && ruff format . | ||
|
||
typecheck: | ||
pyright . |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# Manually Instrument Your LLM Applications | ||
|
||
This example shows how to manually instrument an LLM application using OpenTelemetry with OpenInference semantic conventions. Once instrumented, your application will produce trace data that can be collected and analyzed using Arize and Phoenix. | ||
|
||
This implementation uses a FastAPI backend and a Streamlit frontend. It provides a reference not only for Python developers who wish to manually instrument their bespoke applications, but also for developers in statically compiled languages for which auto-instrumentation is not possible. | ||
|
||
|
||
## Background | ||
|
||
[OpenTelemetry](https://opentelemetry.io/) (OTel) is an open-source observability framework that provides APIs, libraries, and instrumentation to collect and export telemetry data (metrics, logs, and traces). OTel provides a unified and vendor-agnostic way to collect observability data, enabling developers to get a comprehensive view into their systems. | ||
|
||
[OpenInference](https://github.com/Arize-ai/openinference) is a set of OTel-compatible conventions and plugins that facilitate tracing of AI and LLM applications. OpenInference is natively supported by Arize and Phoenix, but can be used with any OTel-compatible backend. | ||
|
||
The easiest way to get started with OpenInference is to use one of our [auto-instrumentation libraries](https://github.com/Arize-ai/openinference?tab=readme-ov-file#instrumentation), which instrument your LLM orchestration framework or SDK of choice with a few lines of code. For bespoke applications, you may wish to manually instrument your application, meaning that you as the developer are responsible for constructing your traces and spans and ensuring that they adhere to the conventions defined in the [OpenInference specification](https://github.com/Arize-ai/openinference/tree/main/spec). For the sake of illustration, this example keeps the dependencies to a minimum and does not leverage any LLM orchestration frameworks, SDKs, or auto-instrumentation libraries. | ||
|
||
💡 We recommend using auto-instrumentation when available. For example, if you are already making requests to the OpenAI API via the OpenAI Python SDK, it's easier to instrument those calls via OpenAI auto-instrumentation than to do so manually. | ||
|
||
ℹ️ Note that OTel gives you the flexibility to mix and match auto-instrumentation with manually created traces and spans, so whether to adopt manual or automatic instrumentation is not a binary decision. | ||
|
||
|
||
## Setup | ||
|
||
Install dependencies with | ||
|
||
```python | ||
pip install -e . | ||
``` | ||
|
||
Run the FastAPI server with | ||
|
||
``` | ||
uvicorn chat.app:app | ||
``` | ||
|
||
Run the Streamlit frontend with | ||
|
||
``` | ||
streamlit run app.py | ||
``` | ||
|
||
Run Phoenix with | ||
|
||
``` | ||
python -m phoenix.server.main serve | ||
``` | ||
|
||
Chat with the chatbot and watch your traces appear in Phoenix in real-time. | ||
|
||
|
||
## Resources | ||
|
||
The following resources may prove useful when manually instrumenting your application: | ||
|
||
- [OpenInference Semantic Conventions](https://github.com/Arize-ai/openinference/blob/main/spec/semantic_conventions.md) | ||
- [`openinference-semantic-conventions` Python source code](https://github.com/Arize-ai/openinference/tree/main/python/openinference-semantic-conventions) | ||
- [`@arizeai/openinference-semantic-conventions` JavaScript source code](https://github.com/Arize-ai/openinference/tree/main/js/packages/openinference-semantic-conventions) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
import json | ||
|
||
import streamlit as st | ||
from httpx import Client | ||
|
||
from chat.types import Message, MessagesPayload, MessagesResponse | ||
|
||
http_client = Client() | ||
|
||
|
||
MESSAGES_ENDPOINT = "http://localhost:8000/messages/" | ||
|
||
|
||
st.title("Chat") | ||
|
||
if "messages" not in st.session_state: | ||
st.session_state.messages = [] | ||
|
||
for message in st.session_state.messages: | ||
with st.chat_message(message.role): | ||
st.markdown(message.content) | ||
|
||
if user_message_content := st.chat_input("Message"): | ||
st.session_state.messages.append(Message(role="user", content=user_message_content)) | ||
payload = MessagesPayload(messages=st.session_state.messages) | ||
with st.chat_message("user"): | ||
st.markdown(user_message_content) | ||
with st.chat_message("assistant"): | ||
try: | ||
response = http_client.post( | ||
MESSAGES_ENDPOINT, | ||
json=payload.model_dump(), | ||
) | ||
if not (200 <= response.status_code < 300): | ||
raise Exception(response.content.decode("utf-8")) | ||
except Exception as error: | ||
try: | ||
error_data = json.loads(str(error)) | ||
st.error("An error occurred") | ||
st.json(error_data) | ||
except json.JSONDecodeError: | ||
st.error(f"An error occurred: {error}") | ||
else: | ||
messages_response = MessagesResponse.model_validate(response.json()) | ||
assistant_message = messages_response.message | ||
st.markdown(assistant_message.content) | ||
st.session_state.messages.append(assistant_message) |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,189 @@ | ||
import json | ||
import os | ||
from typing import Any, Dict, Iterator, List, Tuple | ||
|
||
from fastapi import FastAPI, HTTPException | ||
from httpx import AsyncClient | ||
from openinference.semconv.trace import ( | ||
MessageAttributes, | ||
OpenInferenceMimeTypeValues, | ||
OpenInferenceSpanKindValues, | ||
SpanAttributes, | ||
) | ||
from opentelemetry import trace as trace_api | ||
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter | ||
from opentelemetry.sdk import trace as trace_sdk | ||
from opentelemetry.sdk.trace.export import ( | ||
SimpleSpanProcessor, | ||
) | ||
|
||
from chat.types import Message, MessagesPayload, MessagesResponse | ||
|
||
endpoint = "http://127.0.0.1:6006/v1/traces" | ||
tracer_provider = trace_sdk.TracerProvider() | ||
tracer_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter(endpoint))) | ||
trace_api.set_tracer_provider(tracer_provider) | ||
tracer = trace_api.get_tracer(__name__) | ||
|
||
|
||
def getenv_or_raise(key: str) -> str: | ||
if not (value := os.getenv(key)): | ||
raise ValueError(f"Please set the {key} environment variable.") | ||
return value | ||
|
||
|
||
OPENAI_API_KEY = getenv_or_raise("OPENAI_API_KEY") | ||
OPENAI_API_URL = "https://api.openai.com/v1/chat/completions" | ||
OPENAI_MODEL = "gpt-4" | ||
|
||
http_client = AsyncClient() | ||
app = FastAPI() | ||
|
||
|
||
class OpenAIException(HTTPException): | ||
pass | ||
|
||
|
||
@app.post("/messages/") | ||
async def messages(messages_payload: MessagesPayload) -> MessagesResponse: | ||
messages = messages_payload.messages | ||
invocation_parameters = {"temperature": 0.1} | ||
openai_payload = { | ||
"model": OPENAI_MODEL, | ||
**invocation_parameters, | ||
"messages": [message.model_dump() for message in messages], | ||
} | ||
with tracer.start_as_current_span("OpenAI Async Chat Completion") as span: | ||
for attribute_key, attribute_value in ( | ||
*_llm_span_kind_attributes(), | ||
*_llm_model_name_attributes(OPENAI_MODEL), | ||
*_llm_invocation_parameters_attributes(invocation_parameters), | ||
*_input_attributes(openai_payload), | ||
*_llm_input_messages_attributes(messages), | ||
): | ||
span.set_attribute(attribute_key, attribute_value) | ||
response = await http_client.post( | ||
OPENAI_API_URL, | ||
headers={ | ||
"Content-Type": "application/json", | ||
"Authorization": f"Bearer {OPENAI_API_KEY}", | ||
}, | ||
json=openai_payload, | ||
) | ||
if not (200 <= response.status_code < 300): | ||
raise OpenAIException( | ||
status_code=500, detail=response.content.decode("utf-8") | ||
) | ||
span.set_status(trace_api.StatusCode.OK) | ||
response_data = response.json() | ||
assistant_message_content = response_data["choices"][0]["message"]["content"] | ||
assistant_message = Message( | ||
role="assistant", | ||
content=assistant_message_content, | ||
) | ||
for ( | ||
attribute_key, | ||
attribute_value, | ||
) in ( | ||
*_output_attributes(response_data), | ||
*_llm_output_message_attributes(assistant_message), | ||
*_llm_token_usage_attributes(response_data), | ||
): | ||
span.set_attribute(attribute_key, attribute_value) | ||
return MessagesResponse(message=assistant_message) | ||
|
||
|
||
def _llm_span_kind_attributes() -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference span kind attribute for LLMs. | ||
""" | ||
yield SpanAttributes.OPENINFERENCE_SPAN_KIND, OpenInferenceSpanKindValues.LLM.value | ||
|
||
|
||
def _llm_model_name_attributes(model_name: str) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference model name attribute. | ||
""" | ||
yield SpanAttributes.LLM_MODEL_NAME, model_name | ||
|
||
|
||
def _llm_invocation_parameters_attributes( | ||
invocation_parameters: Dict[str, Any], | ||
) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference invocation parameters attribute as a JSON string. | ||
""" | ||
yield SpanAttributes.LLM_INVOCATION_PARAMETERS, json.dumps(invocation_parameters) | ||
|
||
|
||
def _input_attributes(payload: Any) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference input value attribute as a JSON string if the | ||
payload can be serialized as JSON, otherwise as a string. | ||
""" | ||
try: | ||
yield SpanAttributes.INPUT_VALUE, json.dumps(payload) | ||
yield SpanAttributes.INPUT_MIME_TYPE, OpenInferenceMimeTypeValues.JSON.value | ||
except json.JSONDecodeError: | ||
yield SpanAttributes.INPUT_VALUE, str(payload) | ||
yield SpanAttributes.INPUT_MIME_TYPE, OpenInferenceMimeTypeValues.TEXT.value | ||
|
||
|
||
def _llm_input_messages_attributes( | ||
messages: List[Message], | ||
) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference input messages attributes for each message in the list. | ||
""" | ||
for messages_index, message in enumerate(messages): | ||
yield ( | ||
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{messages_index}.{MessageAttributes.MESSAGE_ROLE}", | ||
message.role, | ||
) | ||
yield ( | ||
f"{SpanAttributes.LLM_INPUT_MESSAGES}.{messages_index}.{MessageAttributes.MESSAGE_CONTENT}", | ||
message.content, | ||
) | ||
|
||
|
||
def _output_attributes(payload: Any) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference output value attribute as a JSON string if the | ||
payload can be serialized as JSON, otherwise as a string. | ||
""" | ||
try: | ||
yield SpanAttributes.OUTPUT_VALUE, json.dumps(payload) | ||
yield SpanAttributes.OUTPUT_MIME_TYPE, OpenInferenceMimeTypeValues.JSON.value | ||
except json.JSONDecodeError: | ||
yield SpanAttributes.OUTPUT_VALUE, str(payload) | ||
yield SpanAttributes.OUTPUT_MIME_TYPE, OpenInferenceMimeTypeValues.TEXT.value | ||
|
||
|
||
def _llm_output_message_attributes(message: Message) -> Iterator[Tuple[str, str]]: | ||
""" | ||
Yields the OpenInference output message attributes. | ||
""" | ||
yield ( | ||
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_ROLE}", | ||
message.role, | ||
) | ||
yield ( | ||
f"{SpanAttributes.LLM_OUTPUT_MESSAGES}.0.{MessageAttributes.MESSAGE_CONTENT}", | ||
message.content, | ||
) | ||
|
||
|
||
def _llm_token_usage_attributes( | ||
response_data: Dict[str, Any], | ||
) -> Iterator[Tuple[str, int]]: | ||
""" | ||
Parses and yields token usage attributes from the response data. | ||
""" | ||
if not isinstance((usage := response_data.get("usage")), dict): | ||
return | ||
if prompt_tokens := usage.get("prompt_tokens"): | ||
yield SpanAttributes.LLM_TOKEN_COUNT_PROMPT, prompt_tokens | ||
if completion_tokens := usage.get("completion_tokens"): | ||
yield SpanAttributes.LLM_TOKEN_COUNT_COMPLETION, completion_tokens | ||
if total_tokens := usage.get("total_tokens"): | ||
yield SpanAttributes.LLM_TOKEN_COUNT_TOTAL, total_tokens |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
from typing import List, Literal | ||
|
||
from pydantic import BaseModel | ||
|
||
Role = Literal["system", "assistant", "user"] | ||
|
||
|
||
class Message(BaseModel): | ||
role: Role | ||
content: str | ||
|
||
|
||
class MessagesPayload(BaseModel): | ||
messages: List[Message] | ||
|
||
|
||
class MessagesResponse(BaseModel): | ||
message: Message |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
[project] | ||
name = "chat" | ||
version = "0.1.0" | ||
dependencies = [ | ||
"opentelemetry-api", | ||
"opentelemetry-sdk", | ||
"opentelemetry-exporter-otlp", | ||
"openinference-semantic-conventions", | ||
"streamlit", | ||
"httpx", | ||
"pydantic", | ||
"uvicorn", | ||
"arize-phoenix", | ||
] | ||
requires-python = ">=3.8" | ||
|
||
[project.optional-dependencies] | ||
dev = [ | ||
"pyright", | ||
"ruff", | ||
] | ||
|
||
[tool.ruff.lint] | ||
extend-select = ["I"] |