Skip to content

Commit

Permalink
Repo: clean up and flatten structures for Search lectures (#357)
Browse files Browse the repository at this point in the history
follow-up to
#352

In Search hatten wir noch ein tiefe Unterstruktur, die zu einem relativ
verschachtelten Menü führt. Dieser PR korrgiert dies.
  • Loading branch information
cagix authored Aug 22, 2024
1 parent d0b351c commit 6d44065
Show file tree
Hide file tree
Showing 27 changed files with 14 additions and 82 deletions.
File renamed without changes.
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
File renamed without changes
24 changes: 0 additions & 24 deletions lecture/searching/informed/readme.md

This file was deleted.

Empty file.
Binary file removed lecture/searching/local/images/challenge.png
Binary file not shown.
Binary file removed lecture/searching/local/images/graph.png
Binary file not shown.
Binary file removed lecture/searching/local/images/tafelbeispiel.png
Binary file not shown.
24 changes: 0 additions & 24 deletions lecture/searching/local/readme.md

This file was deleted.

4 changes: 4 additions & 0 deletions lecture/searching/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,10 @@ title: "Suche"
Problemlösen durch Suche im Problemgraphen. Aus den Basisalgorithmen Tree-Search und Graph-Search
entstehen je nach verwendeter Datenstruktur und nach betrachteten Kosten unterschiedliche Suchalgorithmen.

- Uninformierte Suche: ... jeder Schritt "kostet" gleich viel: nur die Anzahl der Schritte zählt ...
- Informierte Suche: ... Einsatz einer Kostenfunktion ...
- Lokale Suche: ... das Ziel ist im Weg ...


`{{< children showhidden="true" >}}`{=markdown}

Expand Down
File renamed without changes.
File renamed without changes.
File renamed without changes.
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ challenges: |
![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/MapGermanyGraph.svg/476px-MapGermanyGraph.svg.png)
Quelle: [MapGermanyGraph.svg](https://commons.wikimedia.org/wiki/File:MapGermanyGraph.svg) by [Regnaron](https://de.wikipedia.org/wiki/Benutzer:Regnaron) and [Jahobr](https://commons.wikimedia.org/wiki/User:Jahobr) on Wikimedia Commons ([Public Domain](https://en.wikipedia.org/wiki/en:public_domain))
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/informed/images/challenge.png)
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/images/challenge.png)
Finden Sie mit der **Best-First-Suche** jeweils einen Weg von Würzburg nach München. Vergleichen Sie das Ergebnis mit der Gradienten-Suche.
---
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ challenges: |
Betrachten Sie folgendes Problem:
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/informed/images/challenges_robby.png)
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/images/challenges_robby.png)
Dargestellt ist eine typische Büroumgebung mit verschiedenen Räumen und einem Flur. Die Pfeile in den Durchgängen geben an, in welche Richtung der jeweilige Durchgang durchschritten werden darf. Die Werte an den Pfeilen geben die Kosten für den Übergang von einem Raum in den anderen an.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ challenges: |
![](https://upload.wikimedia.org/wikipedia/commons/thumb/a/ad/MapGermanyGraph.svg/476px-MapGermanyGraph.svg.png)
Quelle: [MapGermanyGraph.svg](https://commons.wikimedia.org/wiki/File:MapGermanyGraph.svg) by [Regnaron](https://de.wikipedia.org/wiki/Benutzer:Regnaron) and [Jahobr](https://commons.wikimedia.org/wiki/User:Jahobr) on Wikimedia Commons ([Public Domain](https://en.wikipedia.org/wiki/en:public_domain))
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/local/images/challenge.png)
![](https://raw.githubusercontent.com/Artificial-Intelligence-HSBI-TDU/KI-Vorlesung/master/lecture/searching/images/challenge.png)
Finden Sie mit der **Gradienten-Suche** jeweils einen Weg von Würzburg nach München. Vergleichen Sie das Ergebnis mit der Best-First-Suche.
---
Expand Down
File renamed without changes.
Empty file.
Binary file removed lecture/searching/uninformed/images/graph.png
Binary file not shown.
Binary file not shown.
24 changes: 0 additions & 24 deletions lecture/searching/uninformed/readme.md

This file was deleted.

14 changes: 7 additions & 7 deletions readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -256,13 +256,13 @@ Hier finden Sie einen abonnierbaren [Google Kalender] mit allen Terminen der Ver
[Einführung KI]: lecture/intro/intro1-overview.md
[Problemlösen]: lecture/intro/intro2-problemsolving.md

[Tiefensuche]: lecture/searching/uninformed/search1-dfs.md
[Breitensuche]: lecture/searching/uninformed/search2-bfs.md
[Branch-and-Bound]: lecture/searching/informed/search3-branchandbound.md
[Best First]: lecture/searching/informed/search4-bestfirst.md
[A-Stern]: lecture//searching/informed/search5-astar.md
[Gradientensuche]: lecture/searching/local/search6-gradient.md
[Simulated Annealing]: lecture/searching/local/search7-annealing.md
[Tiefensuche]: lecture/searching/search1-dfs.md
[Breitensuche]: lecture/searching/search2-bfs.md
[Branch-and-Bound]: lecture/searching/search3-branchandbound.md
[Best First]: lecture/searching/search4-bestfirst.md
[A-Stern]: lecture//searching/search5-astar.md
[Gradientensuche]: lecture/searching/search6-gradient.md
[Simulated Annealing]: lecture/searching/search7-annealing.md

[Intro EA/GA]: lecture/ea/ea1-intro.md
[Genetische Algorithmen]: lecture/ea/ea2-ga.md
Expand Down

0 comments on commit 6d44065

Please sign in to comment.