Skip to content

Bayesian mutivariate models for clustering spatial transcriptomics data. Here I forked the original SPRUCE GitHub page to add a computation of WAIC for specific MVN models.

Notifications You must be signed in to change notification settings

BasMatsuura/spruce_waic

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

47 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Please note this package is no longer being maintained. All open issues will be closed.

spruce

A suite of Bayesian multivariate finite mixture models for clustering single cell spatial transcriptomics data.

R-CMD-check

The spruce package is a robust and comprehensive tool for analyzing single cell spatial transcriptomics data using Bayesian multivariate finite mixture models. spruce accommodates multiple gene expression distributions, namely multivariate normal (MVN) and multivariate skew-normal (MSN). The MVN model, which is simpler and more computationally efficient, is suitable for modeling dimension reduction features as provided from approaches like principal components analysis, while the MSN model should be used when modeling normalized gene expression features directly, as conversion of over-dispersed count data to continuous features results in inherently right-skewed features. spruce also allows for a range of methods for accomodating spatial correlation across a tissue sample, including spatially correlated CAR/MCAR random intercepts or spatial prior smoothing in cluster indicators via a Potts similar to BayesSpace.

spruce can also be used as a comprehensive data simulation tool for power analysis and the design of spatial transcriptomics experiments.

While spruce is intended for modeling single-sample HST experiments, we have developed maple for extension of this methodology to multi-sample HST data.

Installation

library(devtools)
install_github('carter-allen/spruce')

About

Bayesian mutivariate models for clustering spatial transcriptomics data. Here I forked the original SPRUCE GitHub page to add a computation of WAIC for specific MVN models.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • R 71.6%
  • C++ 28.4%