Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improves examples #31

Merged
merged 6 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 16 additions & 12 deletions ebcc/dump.py
Original file line number Diff line number Diff line change
Expand Up @@ -219,19 +219,23 @@ def read(self, cls, log=None):
amplitudes = load(self.name, "amplitudes")
lambdas = load(self.name, "lambdas")
if spin_type == "U":
amplitudes = {
key: (util.Namespace(**val) if isinstance(val, dict) else val)
for key, val in amplitudes.items()
}
lambdas = {
key: (util.Namespace(**val) if isinstance(val, dict) else val)
for key, val in lambdas.items()
}
amplitudes = util.Namespace(**amplitudes)
lambdas = util.Namespace(**lambdas)
if amplitudes is not None:
amplitudes = {
key: (util.Namespace(**val) if isinstance(val, dict) else val)
for key, val in amplitudes.items()
}
amplitudes = util.Namespace(**amplitudes)
if lambdas is not None:
lambdas = {
key: (util.Namespace(**val) if isinstance(val, dict) else val)
for key, val in lambdas.items()
}
lambdas = util.Namespace(**lambdas)
else:
amplitudes = util.Namespace(**amplitudes)
lambdas = util.Namespace(**lambdas)
if amplitudes is not None:
amplitudes = util.Namespace(**amplitudes)
if lambdas is not None:
lambdas = util.Namespace(**lambdas)

# Initialise the EBCC object
cc = cls(
Expand Down
7 changes: 7 additions & 0 deletions examples/00-ccsd.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,22 @@
"""
Example of a simple CCSD calculation.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import EBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a Hartree-Fock calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

# Run a CCSD calculation using EBCC
ccsd = EBCC(mf)
ccsd.kernel()
18 changes: 12 additions & 6 deletions examples/01-ebccsd.py
Original file line number Diff line number Diff line change
@@ -1,15 +1,21 @@
"""
Example of some electron-boson CCSD calculations.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import EBCC

np.random.seed(123)

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a Hartree-Fock calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

Expand All @@ -26,13 +32,13 @@
# v v v v
# ____ _ _ _
# CCSD-S-1-1: One-boson amplitudes and one-boson-one-fermion coupling
ccsd = EBCC(
ccsd_s_1_1 = EBCC(
mf,
ansatz="CCSD-S-1-1",
omega=omega,
g=g,
)
ccsd.kernel()
ccsd_s_1_1.kernel()

# ,--------- Fermionic ansatz
# | ,------ Bosonic excitation amplitudes
Expand All @@ -41,13 +47,13 @@
# v v v v
# ____ __ _ _
# CCSD-SD-1-1: Two-boson amplitudes and one-boson-one-fermion coupling
ccsd = EBCC(
ccsd_sd_1_1 = EBCC(
mf,
ansatz="CCSD-SD-1-1",
omega=omega,
g=g,
)
ccsd.kernel()
ccsd_sd_1_1.kernel()

# ,--------- Fermionic ansatz
# | ,------ Bosonic excitation amplitudes
Expand All @@ -56,10 +62,10 @@
# v v v v
# ____ __ _ _
# CCSD-SD-1-2: Two-boson amplitudes and two-boson-one-fermion coupling
ccsd = EBCC(
ccsd_sd_1_2 = EBCC(
mf,
ansatz="CCSD-SD-1-2",
omega=omega,
g=g,
)
ccsd.kernel()
ccsd_sd_1_2.kernel()
11 changes: 10 additions & 1 deletion examples/02-eom_uccsd.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,27 @@
"""
Example of a CCSD calculation using a UHF reference and a subsequent
EOM-CCSD calculation for the ionization potential.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import UEBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a UHF calculation using PySCF
mf = scf.UHF(mol)
mf.kernel()

ccsd = UEBCC(mf)
# Run a UCCSD calculation
ccsd = UEBCC(mf, ansatz="CCSD")
ccsd.kernel()

# Run an EOM-CCSD calculation
eom = ccsd.ip_eom()
eom.kernel()
12 changes: 9 additions & 3 deletions examples/03-cc2.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,22 @@
"""
Example of a CC2 calculation.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import EBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

ccsd = EBCC(mf, ansatz="CC2")
ccsd.kernel()

# Run a CC2 calculation
cc2 = EBCC(mf, ansatz="CC2")
cc2.kernel()
16 changes: 13 additions & 3 deletions examples/04-ccsdt_active_space.py
Original file line number Diff line number Diff line change
@@ -1,25 +1,35 @@
"""
Example of a CCSDt' calculation with T3 amplitudes in an active
space.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import REBCC, Space

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

frozen = np.zeros_like(mf.mo_occ, dtype=bool)
active = np.zeros_like(mf.mo_occ, dtype=bool)
# Define the occupied, frozen, and active spaces
occupied = mf.mo_occ > 0
frozen = np.zeros_like(occupied)
active = np.zeros_like(occupied)
active[mol.nelectron // 2 - 1] = True # HOMO
active[mol.nelectron // 2] = True # LUMO
space = Space(
mf.mo_occ > 0,
occupied,
frozen,
active,
)

# Run a CCSDt' calculation
ccsdt = REBCC(mf, ansatz="CCSDt'", space=space)
ccsdt.kernel()
25 changes: 25 additions & 0 deletions examples/05-bccd.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
"""
Example of a Brueckner orbital calculation using a CCSD reference.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import EBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

# Run a CCSD calculation
ccsd = EBCC(mf, ansatz="CCSD")
ccsd.kernel()

# Run a Brueckner orbital calculation using the CCSD reference
ccsd.brueckner(e_tol=1e-6, t_tol=1e-5)
37 changes: 37 additions & 0 deletions examples/06-restart.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
"""
Example of saving and restarting an EBCC calculation.
"""

import os
import numpy as np
from pyscf import gto, scf

from ebcc import REBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

# Run a CC3 calculation that does not converge
cc3 = REBCC(mf, ansatz="CC3")
cc3.options.max_iter = 5
cc3.kernel()

# Save the calculation to a file
cc3.write("restart.h5")

# Load the calculation from the file
cc3 = REBCC.read("restart.h5")

# Run the calculation again, but this time with a higher max_iter
cc3.options.max_iter = 20
cc3.kernel()

# Delete the file
os.remove("restart.h5")
42 changes: 42 additions & 0 deletions examples/07-rdms.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
"""
Example obtaining RDMs from EBCC.
"""

import numpy as np
from pyscf import gto, scf, lib

from ebcc import GEBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

# Convert the RHF object to a GHF object (not necessary for density
# matrices, just simplifies the Hamiltonian)
mf = mf.to_ghf()

# Run a CCSD calculation
ccsd = GEBCC(mf, ansatz="CCSD")
ccsd.kernel()

# If the Λ amplitudes are not solved, EBCC will use the approximation
# Λ = T* and warn the user.
ccsd.solve_lambda()

# Fermionic RDMs
dm1 = ccsd.make_rdm1_f()
dm2 = ccsd.make_rdm2_f()

# Compare the energies
h1 = np.linalg.multi_dot((mf.mo_coeff.T, mf.get_hcore(), mf.mo_coeff))
h2 = ccsd.get_eris().array
e_rdm = lib.einsum("pq,qp->", h1, dm1)
e_rdm += lib.einsum("pqrs,pqrs->", h2, dm2) * 0.5
e_rdm += mol.energy_nuc()
assert np.allclose(e_rdm, ccsd.e_tot)
27 changes: 27 additions & 0 deletions examples/08-mp2.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
"""
Example of a simple MP2 calculation.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import REBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a Hartree-Fock calculation using PySCF
mf = scf.RHF(mol)
mf.kernel()

# The CC solver can be used for Moller-Plesset perturbation theory,
# and EBCC will detect that convergence isn't necessary via the
# `ansatz.is_one_shot` attribute.
mp2 = REBCC(mf, ansatz="MP2")
mp2.kernel()

# Note that this is not the most efficient way to compute MP energies,
# as EBCC will still generate bare amplitudes stored in memory.
36 changes: 36 additions & 0 deletions examples/09-spin_conversion.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
"""
Example of converting restricted and unrestricted EBCC calculations
to spin-orbital (GHF) EBCC calculations.
"""

import numpy as np
from pyscf import gto, scf

from ebcc import REBCC, UEBCC, GEBCC

# Define the molecule using PySCF
mol = gto.Mole()
mol.atom = "H 0 0 0; F 0 0 1.1"
mol.basis = "cc-pvdz"
mol.build()

# Run a RHF calculation using PySCF
rhf = scf.RHF(mol)
rhf.kernel()

# Run a REBCC calculation
rcc = REBCC(rhf, ansatz="QCISD")
rcc.kernel()

# Convert to unrestricted and run kernel - unless the UEBCC solution
# breaks some symmetry this should converge immediately to the same
# solution as the REBCC calculation.
uebcc_from_rebcc = UEBCC.from_rebcc(rcc)
uebcc_from_rebcc.kernel()

# Conversion of REBCC to GEBCC goes via a UEBCC intermediate, here
# we just convert the UEBCC object we just created. Once again, in
# the absence of symmetry breaking this should converge immediately
# to the same solution as the REBCC calculation.
gebcc_from_uebcc = GEBCC.from_uebcc(uebcc_from_rebcc)
gebcc_from_uebcc.kernel()
Loading
Loading