Skip to content

Commit

Permalink
インデントもダメ見たい
Browse files Browse the repository at this point in the history
  • Loading branch information
CaseyNelson314 committed Jan 25, 2024
1 parent 0eab407 commit b2bd30d
Showing 1 changed file with 59 additions and 59 deletions.
118 changes: 59 additions & 59 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -24,83 +24,83 @@ $$

- 点電荷

$$
E(r) = \frac{Q}{4 \pi \varepsilon_0 r^{2}}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{Q}{4 \pi \varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r}
$$
$$
E(r) = \frac{Q}{4 \pi \varepsilon_0 r^{2}}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{Q}{4 \pi \varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r}
$$

- 無限長線電荷

$$
E(r) = \frac{\lambda}{2 \pi \varepsilon_0 r}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{\lambda}{2 \pi \varepsilon_0\lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r}
$$
$$
E(r) = \frac{\lambda}{2 \pi \varepsilon_0 r}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{\lambda}{2 \pi \varepsilon_0\lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r}
$$

- 無限面電荷

$$
E(r) = \frac{\sigma}{2 \varepsilon_0}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{\sigma}{2 \varepsilon_0 \lvert\boldsymbol{r}\rvert} \boldsymbol{r}
$$
$$
E(r) = \frac{\sigma}{2 \varepsilon_0}
\qquad
\boldsymbol{E}(\boldsymbol{r}) = \frac{\sigma}{2 \varepsilon_0 \lvert\boldsymbol{r}\rvert} \boldsymbol{r}
$$

- 球表面電荷

$$
\begin{cases}
E(r) = \frac{\sigma a^{2}}{\varepsilon_0 r^{2}} & (a \leq r) \\
E(r) = 0 & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\sigma a^{2}}{\varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{0} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$
$$
\begin{cases}
E(r) = \frac{\sigma a^{2}}{\varepsilon_0 r^{2}} & (a \leq r) \\
E(r) = 0 & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\sigma a^{2}}{\varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{0} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$

- 球体積電荷

$$
\begin{cases}
E(r) = \frac{\rho a^{3}}{3 \varepsilon_0 r^{2}} & (a \leq r) \\
E(r) = \frac{\rho r}{3 \varepsilon_0} & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho a^{3}}{3 \varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho}{3 \varepsilon_0} \boldsymbol{r} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$
$$
\begin{cases}
E(r) = \frac{\rho a^{3}}{3 \varepsilon_0 r^{2}} & (a \leq r) \\
E(r) = \frac{\rho r}{3 \varepsilon_0} & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho a^{3}}{3 \varepsilon_0 \lvert\boldsymbol{r}\rvert^{3}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho}{3 \varepsilon_0} \boldsymbol{r} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$

- 円筒表面電荷

$$
\begin{cases}
E(r) = \frac{\sigma a}{\varepsilon_0 r} & (a \leq r) \\
E(r) = 0 & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{ \sigma a}{\varepsilon_0 \lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{0} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$
$$
\begin{cases}
E(r) = \frac{\sigma a}{\varepsilon_0 r} & (a \leq r) \\
E(r) = 0 & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{ \sigma a}{\varepsilon_0 \lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \boldsymbol{0} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$

- 円筒体積電荷

$$
\begin{cases}
E(r) = \frac{\rho a^{2}}{2 \varepsilon_0 r} & (a \leq r) \\
E(r) = \frac{\rho r}{2 \varepsilon_0} & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho a^{2}}{2 \varepsilon_0 \lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho}{2 \varepsilon_0} \boldsymbol{r} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$
$$
\begin{cases}
E(r) = \frac{\rho a^{2}}{2 \varepsilon_0 r} & (a \leq r) \\
E(r) = \frac{\rho r}{2 \varepsilon_0} & (0 \leq r < a)
\end{cases}
\qquad
\begin{cases}
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho a^{2}}{2 \varepsilon_0 \lvert\boldsymbol{r}\rvert^{2}} \boldsymbol{r} & (a \leq \lvert\boldsymbol{r}\rvert) \\
\boldsymbol{E}(\boldsymbol{r}) = \frac{\rho}{2 \varepsilon_0} \boldsymbol{r} & (0 \leq \lvert\boldsymbol{r}\rvert < a)
\end{cases}
$$

|| 意味 | 単位 |
| :--------------: | :------------------: | :--------------: |
Expand Down

0 comments on commit b2bd30d

Please sign in to comment.