This is an unofficial implementation of FCOS in a gluon-cv style, we implemented this anchor-free framework in a fully Gluon API, please stay tuned!
Model | Backbone | Train Size | Batch Size | Test Time/im | AP(val) | Link |
---|---|---|---|---|---|---|
fcos_resnet50_v1_coco | ResNet50-V1 | 800 | 1 | - | - | - |
fcos_resnet50_v1b_coco | ResNet50-V1b | 800 | 1 | - | - | - |
fcos_resnet101_v1d_coco | ResNet101-V1d | 800 | 1 | - | - | - |
Note: We will update the results after the experiments done.
- Install cuda
10.0
and mxnet1.4.0
.
sudo pip3 install mxnet-cu100==1.4.0.post0
- Clone the code, and install gluoncv with
setup.py
.
cd fcos-gluon-cv
sudo python3 setup.py build
sudo python3 setup.py install
- Download
COCO2017
datasets follow the official tutorials and create a soft link.
ln -s $DOWNLOAD_PATH ~/.mxnet/datasets/coco
You can also download from cocodataset and execute the command above.
-
More preparations can also refer to GluonCV.
-
All experiments are performed on
8 * 2080ti
GPU withPython3.5
,cuda10.0
andcudnn7.5.0
.
* Model : $ROOT/gluoncv/model_zoo/fcos
* Train & valid scripts : $ROOT/scripts/detection/fcos
* Data Transform : $ROOT/gluoncv/data/transform/presets
- Copy the training scripts here, then train
fcos_resnet50_v1b_coco
with:
python3 train_fcos.py --network resnet50_v1b --gpus 0,1,2,3,4,5,6,7 --num-workers 32 --batch-size 8 --log-interval 10
- Copy the eval scripts here, then validate
fcos_resnet50_v1b_coco
with:
python3 eval_fcos.py --network resnet50_v1b --gpus 0,1,2,3,4,5,6,7 --num-workers 32 --pretrained $SAVE_PATH/XXX.params