This is a tensorflow re-implementation of Focal Loss for Dense Object Detection, and it is completed by YangXue.
Model | Backbone | Training data | Val data | mAP | Inf time (fps) | Model Link | Train Schedule | GPU | Image/GPU | Configuration File |
---|---|---|---|---|---|---|---|---|---|---|
Faster-RCNN | ResNet50_v1 600 | VOC07 trainval | VOC07 test | 73.09 | - | - | - | 1X GTX 1080Ti | 1 | - |
FPN | ResNet50_v1 600 | VOC07 trainval | VOC07 test | 74.26 | - | - | - | 1X GTX 1080Ti | 1 | - |
RetinaNet | ResNet50_v1 600 | VOC07 trainval | VOC07 test | 73.16 | - | - | - | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_voc07_v3.py |
RetinaNet | ResNet50_v1d 600 | VOC07 trainval | VOC07 test | 73.26 | - | - | - | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_voc07_v4.py |
RetinaNet | ResNet50_v1d 600 | VOC07 trainval | VOC07 test | 74.00 | 14.6 | model | - | 4X GeForce RTX 2080 Ti | 2 | cfgs_res50_voc07_v5.py |
RetinaNet | ResNet50_v1d 600 | VOC07+12 trainval | VOC07 test | 79.66 | - | - | - | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_voc0712_v1.py |
RetinaNet | ResNet101_v1d 600 | VOC07+12 trainval | VOC07 test | 81.69 | - | - | - | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_voc0712_v4.py |
RetinaNet | ResNet101_v1d 800 | VOC07+12 trainval | VOC07 test | 80.69 | - | - | - | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_voc0712_v3.py |
RetinaNet | ResNet50_v1d 600 | COCO train2017 | COCO val2017 (coco minival) | 33.4 | 12.2 | - | 1x | 8X GeForce RTX 2080 Ti | 1 | cfgs_res50_coco_1x_v4.py |
RetinaNet | ResNet50_v1d 600 | COCO train2017 | COCO val2017 (coco minival) | 34.3 (paper: 34.0) | 12.2 | model | 1x | 4X GeForce RTX 2080 Ti | 2 | cfgs_res50_coco_1x_v5.py |
1、python3.5 (anaconda recommend)
2、cuda9.0
3、opencv(cv2)
4、tfplot (optional)
5、tensorflow >= 1.12
1、Please download resnet50_v1, resnet101_v1 pre-trained models on Imagenet, put it to data/pretrained_weights.
2、(Recommend in this repo) Or you can choose to use a better backbone, refer to gluon2TF.
- Baidu Drive, password: 5ht9.
- Google Drive
1、COCO dataset related
cd $PATH_ROOT/libs/box_utils/cython_utils
python setup.py build_ext --inplace
1、If you want to train your own data, please note:
(1) Modify parameters (such as CLASS_NUM, DATASET_NAME, VERSION, etc.) in $PATH_ROOT/libs/configs/cfgs.py
(2) Add category information in $PATH_ROOT/libs/label_name_dict/lable_dict.py
(3) Add data_name to $PATH_ROOT/data/io/read_tfrecord.py
2、Make tfrecord
cd $PATH_ROOT/data/io/
python convert_data_to_tfrecord_coco.py --VOC_dir='/PATH/TO/JSON/FILE/'
--save_name='train'
--dataset='coco'
3、Multi-gpu train
cd $PATH_ROOT/tools
multi_gpu_train_batch.py
cd $PATH_ROOT/tools
python eval_coco.py --eval_data='/PATH/TO/IMAGES/'
--eval_gt='/PATH/TO/TEST/ANNOTATION/'
--gpu='0'
cd $PATH_ROOT/tools
python eval_coco_multiprocessing.py --eval_data='/PATH/TO/IMAGES/'
--eval_gt='/PATH/TO/TEST/ANNOTATION/'
--gpus='0,1,2,3,4,5,6,7'
cd $PATH_ROOT/tools
python eval.py --eval_dir='/PATH/TO/IMAGES/'
--annotation_dir='/PATH/TO/TEST/ANNOTATION/'
--gpu='0'
cd $PATH_ROOT/output/summary
tensorboard --logdir=.
1、https://github.com/endernewton/tf-faster-rcnn
2、https://github.com/zengarden/light_head_rcnn
3、https://github.com/tensorflow/models/tree/master/research/object_detection
4、https://github.com/fizyr/keras-retinanet