Skip to content

Commit

Permalink
Merge branch 'develop' into 'master'
Browse files Browse the repository at this point in the history
v2.3.7

See merge request iek-3/shared-code/fine!347
  • Loading branch information
k-knosala committed Apr 22, 2024
2 parents 808df71 + 2063c70 commit 7345c7a
Show file tree
Hide file tree
Showing 9 changed files with 208 additions and 70 deletions.
52 changes: 26 additions & 26 deletions .gitlab-ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ image: mambaorg/micromamba

stages:
- test
- build
- deploy

variables:
DOCKER_HOST: tcp://docker:2375
Expand Down Expand Up @@ -38,6 +38,8 @@ variables:
when: never
- if: $CI_COMMIT_BRANCH && $CI_OPEN_MERGE_REQUESTS
when: never
- if: $CI_COMMIT_TAG
when: never
retry: 1


Expand Down Expand Up @@ -65,6 +67,8 @@ variables:
- requirements.yml
- requirements_dev.yml
when: never
- if: $CI_COMMIT_TAG
when: never
- when: on_success


Expand Down Expand Up @@ -100,14 +104,16 @@ variables:
when: never
- if: $CI_COMMIT_BRANCH && $CI_OPEN_MERGE_REQUESTS
when: never
- if: $CI_COMMIT_TAG
when: never
- changes:
- pyproject.toml
- requirements.yml
- requirements_dev.yml
when: on_success

.build_template:
stage: build
stage: deploy
image: docker@sha256:c8bb6fa5388b56304dd770c4bc0478de81ce18540173b1a589178c0d31bfce90
services:
- docker:dind@sha256:c8bb6fa5388b56304dd770c4bc0478de81ce18540173b1a589178c0d31bfce90
Expand All @@ -121,6 +127,8 @@ test-pypi:
- python -m pip install .[develop]
- python -m pytest -n auto test/
rules:
- if: $CI_COMMIT_TAG
when: never
- if: '$CI_COMMIT_BRANCH == "master"'
- if: '$CI_COMMIT_BRANCH == "develop"'
- if: '$CI_MERGE_REQUEST_TARGET_BRANCH_NAME == "master"'
Expand Down Expand Up @@ -203,27 +211,12 @@ test-codestyle:

# Deployment

build-master-latest:
extends: .build_template
script:
# Login to the DockerHub repo using a specialized access token.
# Then, build the docker image with the tested code and tag it
# with the current version, as well as latest.
# Afterwards, push to DockerHub.
- docker login -u fzjiek3 -p $DOCKER_AT
- docker build -t "fzjiek3/fine:latest" .
- docker push fzjiek3/fine:latest
rules:
- if: $CI_PIPELINE_SOURCE == "schedule"
when: never
- if: $CI_COMMIT_BRANCH == "master"

build-tag:
extends: .build_template
script:
- docker login -u fzjiek3 -p $DOCKER_AT
- docker build -t fzjiek3/fine:${CI_COMMIT_TAG} .
- docker push fzjiek3/fine:${CI_COMMIT_TAG}
- docker build -t fzjiek3/fine:${CI_COMMIT_TAG} -t fzjiek3/fine:latest .
- docker push fzjiek3/fine --all-tags
rules:
- if: $CI_PIPELINE_SOURCE == "schedule"
when: never
Expand All @@ -242,14 +235,21 @@ build-dev:
- if: $CI_COMMIT_BRANCH == "develop"

pypi-upload:
stage: build
stage: deploy
image: python:3.12
before_script:
- python3 -m pip install --upgrade build
- python3 -m pip install --upgrade twine
variables:
TWINE_USERNAME: $PYPI_USERNAME
TWINE_PASSWORD: $PYPI_PASSWORD
script:
- micromamba install -c conda-forge -n base -y python=3.10
- python -m pip install --upgrade build
- python -m pip install --upgrade twine
- python -m build
- python -m twine upload -u __token__ -p $PYPI_TOKEN dist/*
# Test if the version defined in `pyproject.toml` is the same as the tag
- PYPROJECT_VERSION=$(grep -m 1 version pyproject.toml | tr -s ' ' | tr -d '"' | tr -d "'" | cut -d' ' -f3)
- test PYPROJECT_VERSION = v${CI_COMMIT_TAG}
# Build and push to pypi
- python3 -m build
- python3 -m twine upload dist/*
rules:
- if: $CI_COMMIT_BRANCH == "master" && $CI_COMMIT_TAG
when: manual

2 changes: 1 addition & 1 deletion docs/source/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,7 @@
# The short X.Y version.
version = "2.3"
# The full version, including alpha/beta/rc tags.
release = "2.3.6"
release = "2.3.7"

# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
Expand Down
139 changes: 130 additions & 9 deletions fine/IOManagement/utilsIO.py
Original file line number Diff line number Diff line change
Expand Up @@ -223,7 +223,7 @@ def generateIterationDicts(component_dict, investmentPeriods):
return df_iteration_dict, series_iteration_dict, constants_iteration_dict


def addDFVariablesToXarray(xr_ds, component_dict, df_iteration_dict):
def addDFVariablesToXarray(xr_ds, component_dict, df_iteration_dict, locations):
"""Adds all variables whose data is contained in a pd.DataFrame to xarray dataset.
These variables are normally regional time series (dimensions - space, time)
Expand All @@ -238,10 +238,33 @@ def addDFVariablesToXarray(xr_ds, component_dict, df_iteration_dict):
values - list of tuple of component class and component name
:type df_iteration_dict: dict
:param locations: esM locations
:type locations: list
:return: xr_ds
"""
# Treat transmission data separately
df_iteration_dict_orig = df_iteration_dict.copy()
df_iteration_dict_transm = {}
df_iteration_dict = {}
for variable_description, description_tuple_list in df_iteration_dict_orig.items():
for description_tuple in description_tuple_list:
# check if data is transmission and time dependent
if "Transmission" in description_tuple[0]:
# add "2dim" to variable_description
if variable_description not in df_iteration_dict_transm.keys():
df_iteration_dict_transm[variable_description] = []
df_iteration_dict_transm[variable_description].append(description_tuple)

for variable_description, description_tuple_list in df_iteration_dict.items():
else:
if variable_description not in df_iteration_dict.keys():
df_iteration_dict[variable_description] = []
df_iteration_dict[variable_description].append(description_tuple)

for (
variable_description,
description_tuple_list,
) in df_iteration_dict_transm.items():
df_dict = {}

for description_tuple in description_tuple_list:
Expand All @@ -260,22 +283,48 @@ def addDFVariablesToXarray(xr_ds, component_dict, df_iteration_dict):
data = component_dict[classname][component][variable_description]

multi_index_dataframe = data.stack()
if "Period" in multi_index_dataframe.index.names:
multi_index_dataframe.index.set_names("time", level=1, inplace=True)
multi_index_dataframe.index.set_names("space", level=2, inplace=True)
if set(locations) == set(
component_dict[classname][component][
variable_description
].index.to_list()
):
multi_index_dataframe.index.set_names("space", level=0, inplace=True)
multi_index_dataframe.index.set_names("space_2", level=1, inplace=True)
else:
# split X_X into multiindex
multi_index_dataframe.index.set_names("time", level=0, inplace=True)
multi_index_dataframe.index.set_names("space", level=1, inplace=True)
# use regex to split via location names
import re

pattern = re.compile("(" + "|".join(locations) + ")")
space_index = multi_index_dataframe.index.get_level_values(
"space"
).str.findall(pattern)
time_index = multi_index_dataframe.index.get_level_values("time")
# reconstruct multiindex
multi_index_dataframe.index = pd.MultiIndex.from_tuples(
[
(time_index[i], space_index[i][0], space_index[i][1])
for i in range(len(space_index))
],
names=["time", "space", "space_2"],
)

df_dict[df_description] = multi_index_dataframe

df_variable = pd.concat(df_dict)
df_variable.index.set_names("component", level=0, inplace=True)

ds_component = xr.Dataset()
ds_component[f"ts_{variable_description}"] = (
df_variable.sort_index().to_xarray()
)
if "time" in df_variable.index.names:
ds_component[f"ts_{variable_description}"] = (
df_variable.sort_index().to_xarray()
)
else:
ds_component[f"2d_{variable_description}"] = (
df_variable.sort_index().to_xarray()
)

for comp in df_variable.index.get_level_values(0).unique():
this_class = comp.split("; ")[0]
Expand All @@ -294,6 +343,61 @@ def addDFVariablesToXarray(xr_ds, component_dict, df_iteration_dict):
except Exception:
pass

for variable_description, description_tuple_list in df_iteration_dict.items():
df_dict = {}

for description_tuple in description_tuple_list:
classname, component = description_tuple

df_description = f"{classname}; {component}"

# If a . is present in variable name, then the data would be
# another level further in the component_dict
if "." in variable_description:
[var_name, subvar_name] = variable_description.split(".")
if subvar_name.isdigit():
subvar_name = int(subvar_name)
data = component_dict[classname][component][var_name][subvar_name]
else:
data = component_dict[classname][component][variable_description]

multi_index_dataframe = data.stack()
if "Period" in multi_index_dataframe.index.names:
multi_index_dataframe.index.set_names("time", level=1, inplace=True)
multi_index_dataframe.index.set_names("space", level=2, inplace=True)
else:
multi_index_dataframe.index.set_names("time", level=0, inplace=True)
multi_index_dataframe.index.set_names("space", level=1, inplace=True)

df_dict[df_description] = multi_index_dataframe

# check if there is data
if len(df_dict) > 0:
df_variable = pd.concat(df_dict)
df_variable.index.set_names("component", level=0, inplace=True)

ds_component = xr.Dataset()
ds_component[f"ts_{variable_description}"] = (
df_variable.sort_index().to_xarray()
)

for comp in df_variable.index.get_level_values(0).unique():
this_class = comp.split("; ")[0]
this_comp = comp.split("; ")[1]

this_ds_component = (
ds_component.sel(component=comp)
.squeeze()
.reset_coords(names=["component"], drop=True)
)

try:
xr_ds[this_class][this_comp] = xr.merge(
[xr_ds[this_class][this_comp], this_ds_component]
)
except Exception:
pass

return xr_ds


Expand Down Expand Up @@ -624,10 +728,27 @@ def addTimeSeriesVariableToDict(
df = comp_var_xr.to_series()
elif drop_component:
df = comp_var_xr.drop("component").to_dataframe().unstack(level=1)
elif "space_2" in comp_var_xr.dims:
df = comp_var_xr.to_dataframe().squeeze()
# merge space and space_2 levels
space_index = df.index.get_level_values("space")
space_2_index = df.index.get_level_values("space_2")
new_space_index = [
f"{space_index[i]}_{space_2_index[i]}" for i in range(len(space_index))
]
df.index = pd.MultiIndex.from_tuples(
[
(df.index.get_level_values("time")[i], new_space_index[i])
for i in range(len(new_space_index))
],
names=["time", "space"],
)
df = df.unstack()
df = df.dropna(axis=1, how="all")
else:
df = comp_var_xr.to_dataframe().unstack(level=1)

if isinstance(df, pd.DataFrame):
if isinstance(df, pd.DataFrame) and "space_2" not in comp_var_xr.dims:
if len(df.columns) > 1:
df.columns = df.columns.droplevel(0)

Expand Down
2 changes: 1 addition & 1 deletion fine/IOManagement/xarrayIO.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ def convertOptimizationInputToDatasets(esM, useProcessedValues=False):
}

# STEP 4. Add all df variables to xr_ds
xr_dss = utilsIO.addDFVariablesToXarray(xr_dss, component_dict, df_iteration_dict)
xr_dss = utilsIO.addDFVariablesToXarray(xr_dss, component_dict, df_iteration_dict, list(esM.locations))

# STEP 5. Add all series variables to xr_ds
locations = sorted(esm_dict["locations"])
Expand Down
7 changes: 6 additions & 1 deletion fine/energySystemModel.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
import os
import time
import warnings
import importlib.util

import gurobi_logtools as glt
import pandas as pd
Expand Down Expand Up @@ -2031,7 +2032,11 @@ def optimize(
################################################################################################################

# Set which solver should solve the specified optimization problem
optimizer = opt.SolverFactory(solver)
if solver == "gurobi" and importlib.util.find_spec('gurobipy'):
# Use the direct gurobi solver that uses the Python API.
optimizer = opt.SolverFactory(solver, solver_io="python")
else:
optimizer = opt.SolverFactory(solver)

# Set, if specified, the time limit
if self.solverSpecs["timeLimit"] is not None and solver == "gurobi":
Expand Down
6 changes: 3 additions & 3 deletions fine/transmission.py
Original file line number Diff line number Diff line change
Expand Up @@ -409,15 +409,15 @@ def __init__(
# operationRateMax
self.operationRateMax = operationRateMax
self.fullOperationRateMax = utils.checkAndSetInvestmentPeriodTimeSeries(
esM, name, operationRateMax, self.locationalEligibility
esM, name, operationRateMax, self.locationalEligibility, "2dim"
)
self.aggregatedOperationRateMax = dict.fromkeys(esM.investmentPeriods)
self.processedOperationRateMax = dict.fromkeys(esM.investmentPeriods)

# operationRateFix
self.operationRateFix = operationRateFix
self.fullOperationRateFix = utils.checkAndSetInvestmentPeriodTimeSeries(
esM, name, operationRateFix, self.locationalEligibility
esM, name, operationRateFix, self.locationalEligibility, "2dim"
)
self.aggregatedOperationRateFix = dict.fromkeys(esM.investmentPeriods)
self.processedOperationRateFix = dict.fromkeys(esM.investmentPeriods)
Expand Down
Loading

0 comments on commit 7345c7a

Please sign in to comment.