Skip to content

FlorianKlemt/pytorch-latent-i2a

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTorch Latent I2A

This is a PyTorch implementation of

  • Imagination Augmented Agent (I2A)
  • Latent Space Imagination Augmented Agent (LatentI2A)

This repository is based on a fork of the pytorch-a2c-ppo-acktr repository by Ilya Kostrikov (https://github.com/ikostrikov/pytorch-a2c-ppo-acktr).

To cite our work please use the following bibtex:

@misc{repo,
  author = {Florian Klemt, Angela Denninger, Tim Meinhardt, Laura Leal{-}Taix{\'{e}}},
  title = {PyTorch Latent I2A},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/FlorianKlemt/pytorch-latent-i2a.git}},
  urldate = {2018-10-18}
}

If you have any questions or suggestions write us under [email protected] or [email protected].

Requires

In order to install MiniPacman run:

# MiniPacman
git clone https://github.com/FlorianKlemt/gym-minipacman.git
cd gym-minipacman
pip3 install -e .

Train environment and I2A models

MiniPacman

A2C on MiniPacman Hunt

python3 main.py --env-name HuntMiniPacmanNoFrameskip-v0 --algo a2c --num-stack 1

Environment model for MiniPacman Hunt

Requires a pretrained A2C model, or the flag --no-policy-model-loading.

python3 main_train_environment_model.py --env-name HuntMiniPacmanNoFrameskip-v0 --environment-model MiniModelLabels --weight-decay 0

I2A on MiniPacman Hunt

Requires pretrained environment model.

python3 main.py --env-name HuntMiniPacmanNoFrameskip-v0 --algo i2a --environment-model MiniModelLabels --num-stack 1 --distill-coef 10 --entropy-coef 0.02

I2A with copy model on MiniPacman Hunt

The copy model has the same number of weights as the I2A model, but does not imagine the future. Therefore it does not need an environment model.

python3 main.py --environment-model CopyModel --env-name HuntMiniPacmanNoFrameskip-v0 --algo i2a --num-stack 1 --distill-coef 10 --entropy-coef 0.02

MsPacman

A2C on MsPacman

python3 main.py --env-name MsPacmanNoFrameskip-v0 --algo a2c --train-on-200x160-pixel --num-stack 4

Latent space environment models for MsPacman

Requires a pretrained A2C model, or the flag --no-policy-model-loading.

python3 main_train_environment_model.py --env-name MsPacmanNoFrameskip-v0 --environment-model dSSM_DET --lr 0.0001 --weight-decay 0 --rollout-steps 10
python3 main_train_environment_model.py --env-name MsPacmanNoFrameskip-v0 --environment-model dSSM_VAE --lr 0.0001 --weight-decay 0 --rollout-steps 10
python3 main_train_environment_model.py --env-name MsPacmanNoFrameskip-v0 --environment-model sSSM --lr 0.0001 --weight-decay 0 --rollout-steps 10

LatentI2A on MsPacman

Requires a pretrained latent space environment model.

python3 main.py --env-name MsPacmanNoFrameskip-v0 --algo i2a --distill-coef 10 --entropy-coef 0.01 --num-stack 4 --environment-model dSSM_DET

Visdom server

To see a visualization of the training curves during training, start a visdom server via

python3 -m visdom.server -p 8097

The default port used both by visdom and our code is 8097.

Train or play pretrained models

To continue training on a pretrained model use the --load-model flag. The model must lie in the folder specified via the --save-dir flag (default: ./trained_models/). I2A models must lie under the subfolder ./trained_models/i2a/, A2C models must lie under the subfolder './trained_models/a2c/'. The file must be named the same as the environment name with file-ending .pt.

Example:

python3 main.py --env-name MsPacmanNoFrameskip-v0 --algo i2a --distill-coef 10 --num-stack 4 --environment-model dSSM_DET --load-model

loads the model under ./trained_models/i2a/MsPacmanNoFrameskip-v0.pt. The --algo, --num-stack and --environment-model arguments must be the same as used in the loaded model.

To play with a pretrained model without continuing to train use the --no-training flag.

Example:

python3 main.py --env-name MsPacmanNoFrameskip-v0 --algo i2a --num-stack 4 --environment-model dSSM_DET --no-training

Results

I2A with a dSSM-DET model on MsPacmanNoFrameskip-v0

MsPacmanNoFrameskip-v0-I2A

Hunt MiniPacman (HuntMiniPacmanNoFrameskip-v0)

Hunt-MiniPacman

Regular MiniPacman (RegularMiniPacmanNoFrameskip-v0)

Regular-MiniPacman

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages