Skip to content

Commit

Permalink
A3U TAS support (#416)
Browse files Browse the repository at this point in the history
* A3U TAS support

* merge 2 versions support

* sign

* a3m & a3u generic scheduler

* boilerplate fix

* readme
  • Loading branch information
dburl authored Nov 19, 2024
1 parent f2cab24 commit 723ec14
Show file tree
Hide file tree
Showing 6 changed files with 1,035 additions and 0 deletions.
53 changes: 53 additions & 0 deletions gke-topology-scheduler/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
## Overview

This document gives instructions on how to enable topology in GKE clusters on
A3M & A3U machines clusters.

The general outline for this to be successful is:
- We add labels for topology to nodes in the cluster with a daemonset
- We handle pod scheduling with a scheduling daemon
- Pods with the added scheduleGate are picked up and scheduled

## Prerequisites

For topology awareness to be enabled in A3M, a GKE node pool has to be created with
compact placement. Specifically, the `physical_host` attribute
[ref](https://cloud.google.com/compute/docs/instances/use-compact-placement-policies#verify-vm-location)
should be present for each GPU node in the cluster.

## Configuration

To initialize Kubernetes authentication for scripts:

```gcloud container clusters get-credentials [cluster name] --zone [cluster zone] --project [project id]```

## Usage

First copy this folder locally

Next create config maps for scripts required by pods

- Run `kubectl create configmap topology-scheduler-scripts --namespace
kube-system --from-file=schedule-daemon.py=schedule-daemon.py
--from-file=label-nodes-daemon.py=label-nodes-daemon.py`

Next apply the service account config to the cluster:

- Apply `service-account.yaml` config to the cluster by running `kubectl apply
-f service-account.yaml`.

Now apply the scheduling and label daemons to the cluster so that pods will
automatically be scheduled with the correct schedulingGates

- Apply `schedule-daemon.yaml` daemonset to the cluster by running `kubectl
apply -f schedule-daemon.yaml`.
- If GKE <1.31, apply `label-nodes-daemon.yaml` daemonset
to the cluster by running `kubectl apply -f label-nodes-daemon.yaml`.

To let the daemon "pick up" the workload for scheduling, simply add a
schedulingGate that starts with ”gke.io/topology-aware-auto-”, for example:

```
schedulingGates:
- name: "gke.io/topology-aware-auto-my-job-name"
```
69 changes: 69 additions & 0 deletions gke-topology-scheduler/label-nodes-daemon.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
#!/usr/bin/env python

# Copyright 2024 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Daemon to update Kubernetes node labels based on GCE VM metadata."""

import time
from typing import Dict

from kubernetes import client
from kubernetes import config
import requests


def update_node_labels(kube: client.CoreV1Api) -> None:
"""Updates Kubernetes node labels based on GCE VM metadata."""
node_name_url = "http://metadata.google.internal/computeMetadata/v1/instance/name"
metadata_url = "http://metadata.google.internal/computeMetadata/v1/instance/attributes/physical_host"
headers = {"Metadata-Flavor": "Google"}

response = requests.get(node_name_url, headers=headers)

if response.status_code == 200:
node_name = response.text
else:
print("Node name not found")
return

response = requests.get(metadata_url, headers=headers)

if response.status_code == 200:
physical_host = response.text
else:
print("physical host not found")
return

cluster, rack, host = physical_host.split("/")[1:]

node_labels: Dict[str, str] = {
"topology.gke.io/cluster": cluster,
"topology.gke.io/rack": rack,
"topology.gke.io/host": host,
}

kube.patch_node(node_name, {"metadata": {"labels": node_labels}}) # type: ignore
print(f"Updated labels on node {node_name}: {node_labels}")


if __name__ == "__main__":
# Kubernetes configuration
config.load_incluster_config()
client = client.CoreV1Api()

while True:
print("Starting node update")
# Update node labels
update_node_labels(client)
time.sleep(600)
35 changes: 35 additions & 0 deletions gke-topology-scheduler/label-nodes-daemon.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: label-nodes-daemon
namespace: kube-system
spec:
selector:
matchLabels:
name: label-nodes-daemon
template:
metadata:
labels:
name: label-nodes-daemon
spec:
tolerations:
- operator: "Exists"
key: nvidia.com/gpu
hostNetwork: true
containers:
- name: label-nodes-daemon
image: python:3.10
command:
- bash
- -c
- |
pip install kubernetes
python -u /scripts/label-nodes-daemon.py
volumeMounts:
- name: scripts-volume
mountPath: /scripts
volumes:
- name: scripts-volume
configMap:
name: topology-scheduler-scripts
serviceAccount: topology-scheduler
Loading

0 comments on commit 723ec14

Please sign in to comment.