- Implementation of a distributed Q_learning-based charging strategy with Kmeans net-partition on WRSN with multiple Mobile Chargers.
$ python Simulate.py
experiment_type:
experiment_index:
Experiment_index Experiment_type | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|
node | 300 |
350 |
400 | 450 |
500 |
550 | 600 | 650 | 700 |
target | 200 |
250 |
300 | 350 |
400 |
450 | 500 | 550 | 600 |
MC | 1 | 2 |
3 | 4 |
5 |
6 |
7 | 8 | 9 |
prob | 0.1 | 0.2 | 0.3 | 0.4 |
0.5 |
0.6 | 0.7 |
0.8 |
0.9 |
package | 400 | 450 | 500 | 550 | 600 |
650 |
700 | 750 |
800 |
target
experiments must be reconstructed to matchnode
experiments range if modified
- All expriment results are updated at this sheet.
pandas==1.1.3
scipy==1.5.2
numpy==1.19.2
scikit_learn==0.24.2