Skip to content

Commit

Permalink
subgroup and ideal preimage
Browse files Browse the repository at this point in the history
Signed-off-by: Ali Caglayan <[email protected]>

<!-- ps-id: 55f3b1a6-ee1b-4c43-96b2-53a917e538d8 -->
  • Loading branch information
Alizter committed Oct 10, 2024
1 parent 9ed2b66 commit 48a77e3
Show file tree
Hide file tree
Showing 2 changed files with 68 additions and 0 deletions.
16 changes: 16 additions & 0 deletions theories/Algebra/Groups/Subgroup.v
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,22 @@ Proof.
apply negate_mon_unit.
Defined.

(** The preimage of a subgroup under a group homomorphism is a subgroup. *)
Definition subgroup_preimage {G H : Group} (f : G $-> H) (S : Subgroup H)
: Subgroup G.
Proof.
snrapply Build_Subgroup'.
- exact (S o f).
- hnf; exact _.
- nrefine (transport S (grp_homo_unit f)^ _).
apply subgroup_in_unit.
- hnf; intros x y Sfx Sfy.
nrefine (transport S (grp_homo_op f _ _)^ _).
nrapply subgroup_in_op; only 1: assumption.
nrefine (transport S (grp_homo_inv f _)^ _).
by apply subgroup_in_inv.
Defined.

(** Every group is a (maximal) subgroup of itself *)
Definition maximal_subgroup {G} : Subgroup G.
Proof.
Expand Down
52 changes: 52 additions & 0 deletions theories/Algebra/Rings/Ideal.v
Original file line number Diff line number Diff line change
Expand Up @@ -1217,6 +1217,58 @@ Section IdealLemmas.

End IdealLemmas.

(** ** Preimage of ideals under ring homomorphisms *)

(** The preimage of an ideal under a ring homomorphism is also itself an ideal. This is also known as the contraction of an ideal. *)

Global Instance isleftideal_preimage {R S : Ring} (f : R $-> S)
(I : Subgroup S) `{IsLeftIdeal S I}
: IsLeftIdeal (subgroup_preimage f I).
Proof.
intros r x Ifx.
nrefine (transport I (rng_homo_mult f _ _)^ _).
rapply isleftideal.
exact Ifx.
Defined.

Global Instance isrightideal_preimage {R S : Ring} (f : R $-> S)
(I : Subgroup S) `{IsRightIdeal S I}
: IsRightIdeal (subgroup_preimage f I)
:= isleftideal_preimage (R:=rng_op R) (S:=rng_op S)
(fmap rng_op f) I.

Global Instance isideal_preimage {R S : Ring} (f : R $-> S)
(I : Subgroup S) `{IsIdeal S I}
: IsIdeal (subgroup_preimage f I)
:= {}.

Definition ideal_preimage {R S : Ring} (f : R $-> S) (I : Ideal S)
: Ideal R
:= Build_Ideal R (subgroup_preimage f I) _.

(** ** Extensions of ideals *)

(** The extension of an ideal under a ring homomorphism is the ideal generated by the image of the ideal. *)
Definition ideal_extension {R S : Ring} (f : R $-> S) (I : Ideal R) : Ideal S
:= ideal_generated (fun s => exists r, I r /\ f r = s).

(** The extension of a preimage is always a subset of the original ideal. *)
Definition ideal_subset_extension_preimage {R S : Ring} (f : R $-> S)
(I : Ideal S)
: ideal_extension f (ideal_preimage f I) ⊆ I.
Proof.
intros x.
apply Trunc_rec.
intros y.
induction y.
+ destruct x as [s [p q]].
destruct q; exact p.
+ apply ideal_in_zero.
+ by apply ideal_in_plus_negate.
+ by rapply isleftideal.
+ by rapply isrightideal.
Defined.

(** TODO: Maximal ideals *)
(** TODO: Principal ideal *)
(** TODO: Prime ideals *)
Expand Down

0 comments on commit 48a77e3

Please sign in to comment.